Regulação da Glicemia
Após a absorção dos carboidratos nos intestinos, a veia porta hepática fornece ao fígado uma quantidade enorme de glicose que vai ser liberada para o sangue e suprir as necessidades energéticas de todas as células do organismo.
As concentrações normais de glicose plasmática (glicemia) situam-se em torno de 70 - 110 mg/dl, sendo que situações de hipergicemia tornam o sangue concentrado alterando os mecanismos de troca da água do LIC com o LEC, além de ter efeitos degenerativos em nervos, rins, vasos etc.
Os hormônios pancreáticos insulina e glucagon possuem ação regulatória sobre a glicemia plasmática. Não são os únicos envolvidos no metabolismo dos carboidratos (os hormônios sexuais, epinefrina, glicocorticóides, tireoidianos, GH e outros também têm influenciam a glicemia), porém, sem dúvida, são os mais importantes.
Após a absorção dos carboidratos nos intestinos, a veia porta hepática fornece ao fígado uma quantidade enorme de glicose que vai ser liberada para o sangue e suprir as necessidades energéticas de todas as células do organismo.
As concentrações normais de glicose plasmática (glicemia) situam-se em torno de 70 - 110 mg/dl, sendo que situações de hipergicemia tornam o sangue concentrado alterando os mecanismos de troca da água do LIC com o LEC, além de ter efeitos degenerativos em nervos, rins, vasos etc.
Os hormônios pancreáticos insulina e glucagon possuem ação regulatória sobre a glicemia plasmática. Não são os únicos envolvidos no metabolismo dos carboidratos (os hormônios sexuais, epinefrina, glicocorticóides, tireoidianos, GH e outros também têm influenciam a glicemia), porém, sem dúvida, são os mais importantes.
A insulina é um polipeptídeo (PM = 5.700d) formado por duas cadeias de aminoácidos (a cadeia A com 21 e a cadeia B com 31), unidas entre si por duas pontes dissulfeto de cistina e uma ponte dissulfeto interna na cadeia. É produzida nas células beta das ilhotas de Langherans e é armazenada em vesículas do Aparelho e Golgi em uma forma inativa (pró-insulina). Quando a concentração de glicose sanguínea atinge níveis acima de 110 mg/dl, há um excesso do metabolismo oxidativo mitocondrial nas células beta o que determina a liberação de insulina para a circulação sanguínea a partir de um mecanismo ainda não esclarecido.
Esse excesso do metabolismo mitocondrial nas células beta é devido a pouca atividade das vias de desvio do metabolismo energético comuns nas demais células (síntese de glicogênio, lipídios e corpos cetônicos) o que acarreta uma grande produção de ATP mitocondrial, fato que desencadeia a liberação de insulina para o sangue.
Esse excesso do metabolismo mitocondrial nas células beta é devido a pouca atividade das vias de desvio do metabolismo energético comuns nas demais células (síntese de glicogênio, lipídios e corpos cetônicos) o que acarreta uma grande produção de ATP mitocondrial, fato que desencadeia a liberação de insulina para o sangue.
As principais funções da insulina são:
Estimula a captação de glicose pelas células via GLUT4
Síntese e armazenamento de glicogênio hepático e muscular Síntese de proteínas
Síntese de ácidos graxos, triglicerídeos e colesterol
Como resultado dessas ações, há um consumo intenso de glicose e a queda gradual da glicemia (hipoglicemia) que estimula as células alfa-pancreáticas a liberar o glucagon, um polipeptídio formado por uma cadeia única de 29 aminoácidos (PM = 3.500d) sintetizado pelas células alfa das ilhotas pancreáticas.
Este hormônio possui ação antagônica à insulina, com três efeitos básicos:
Mobilização dos depósitos de aminoácidos e ácidos graxos
Glicogenólise
Neoglicogênse
Esses efeitos hiperglicemiantes possibilitam nova ação insulínica, o que deixa a glicemia de um indivíduo normal em torno dos níveis normais de 70 - 110 mg/dl .
SÍNTESE DO GLICOGÊNIO
Ocorre, principalmente no fígado e nos músculos, apesar de a maioria das células possuírem as enzimas necessárias para esta síntese. Os músculos, em razão de sua grande massa, apresentam cerca de 4 vezes mais glicogênio do que o fígado e não liberam glicose para o sangue, ao contrário do fígado. O glicogênio é uma fonte imediata de glicose para as células quando há a diminuição da glicose sangüínea.
A síntese de glicogênio ocorre sempre em condições de excesso de glicose e corresponde a importante rota de desvio do metabolismo energético. Como toda reação anabólica, é extremamente endergônica e produz uma macromolécula solúvel que se deposita em grânulos solúveis no citoplasma. Esta propriedade do glicogênio torna o excesso de sua síntese um perigo para a célula, já que por ser solúvel e depositar-se no citoplasma, leva ao aumento da concentração do citoplasma, tornando-o muito "viscoso" e diminuindo a atividade enzimática celular, o que pode levar, inclusive, à morte celular. Por isso, é fundamental que a célula possua um mecanismo de regulação da síntese de glicogênio bem coordenado para impedir os efeitos nocivos de um acúmulo de glicogênio.
A síntese de glicogênio é estimulada pela insulina, o que permite a rápida retirada de glicose plasmática e seu depósito quase que imediato como glicogênio. É obvio que a glicose que penetra na célula terá que seguir outras vias metabólicas, além da síntese de glicogênio, uma vez que não possuímos um órgão especializado para esse armazenamento, como é o caso dos vegetais que armazenam o amido nas raízes e sementes.
Fonte: www.ucs.br
Estimula a captação de glicose pelas células via GLUT4
Síntese e armazenamento de glicogênio hepático e muscular Síntese de proteínas
Síntese de ácidos graxos, triglicerídeos e colesterol
Como resultado dessas ações, há um consumo intenso de glicose e a queda gradual da glicemia (hipoglicemia) que estimula as células alfa-pancreáticas a liberar o glucagon, um polipeptídio formado por uma cadeia única de 29 aminoácidos (PM = 3.500d) sintetizado pelas células alfa das ilhotas pancreáticas.
Este hormônio possui ação antagônica à insulina, com três efeitos básicos:
Mobilização dos depósitos de aminoácidos e ácidos graxos
Glicogenólise
Neoglicogênse
Esses efeitos hiperglicemiantes possibilitam nova ação insulínica, o que deixa a glicemia de um indivíduo normal em torno dos níveis normais de 70 - 110 mg/dl .
SÍNTESE DO GLICOGÊNIO
Ocorre, principalmente no fígado e nos músculos, apesar de a maioria das células possuírem as enzimas necessárias para esta síntese. Os músculos, em razão de sua grande massa, apresentam cerca de 4 vezes mais glicogênio do que o fígado e não liberam glicose para o sangue, ao contrário do fígado. O glicogênio é uma fonte imediata de glicose para as células quando há a diminuição da glicose sangüínea.
A síntese de glicogênio ocorre sempre em condições de excesso de glicose e corresponde a importante rota de desvio do metabolismo energético. Como toda reação anabólica, é extremamente endergônica e produz uma macromolécula solúvel que se deposita em grânulos solúveis no citoplasma. Esta propriedade do glicogênio torna o excesso de sua síntese um perigo para a célula, já que por ser solúvel e depositar-se no citoplasma, leva ao aumento da concentração do citoplasma, tornando-o muito "viscoso" e diminuindo a atividade enzimática celular, o que pode levar, inclusive, à morte celular. Por isso, é fundamental que a célula possua um mecanismo de regulação da síntese de glicogênio bem coordenado para impedir os efeitos nocivos de um acúmulo de glicogênio.
A síntese de glicogênio é estimulada pela insulina, o que permite a rápida retirada de glicose plasmática e seu depósito quase que imediato como glicogênio. É obvio que a glicose que penetra na célula terá que seguir outras vias metabólicas, além da síntese de glicogênio, uma vez que não possuímos um órgão especializado para esse armazenamento, como é o caso dos vegetais que armazenam o amido nas raízes e sementes.
Fonte: www.ucs.br
0 comentários:
Postar um comentário