Os carboidratos são substâncias orgânicas também chamadas de hidratos de carbono. Estes nomes foram dados porque, na molécula da maior parte dos carboidratos, para cada carbono presente existem 2 átomos de hidrogênio e 1 átomo de oxigênio, na mesma proporção existente na molécula de água. Daí o nome carbo (carbono) hidrato (hidros= água).
Os açúcares, como a glicose, a frutose e a sacarose são os carboidratos mais conhecidos. Mas também existem carboidratos de moléculas muito grandes (macromoléculas) como a celulose e o amido. Os alimentos ricos em carboidratos produzem a energia necessária para o funcionamento do organismo de quase todos os seres vivos. É com a energia obtida dos carboidratos que temos força para trabalhar, correr, andar e também brincar, etc. A energia dos carboidratos é importante para manter nossa temperatura estável. Por isso, os alimentos ricos em carboidratos são chamados alimentos combustíveis.
Os açúcares, como a glicose, a frutose e a sacarose são os carboidratos mais conhecidos. Mas também existem carboidratos de moléculas muito grandes (macromoléculas) como a celulose e o amido. Os alimentos ricos em carboidratos produzem a energia necessária para o funcionamento do organismo de quase todos os seres vivos. É com a energia obtida dos carboidratos que temos força para trabalhar, correr, andar e também brincar, etc. A energia dos carboidratos é importante para manter nossa temperatura estável. Por isso, os alimentos ricos em carboidratos são chamados alimentos combustíveis.
Você, provavelmente, já ouviu falar em "carboidratos" e "carboidratos complexos". Os carboidratos fornecem o combustível básico para seu corpo. Seu corpo precisa dos carboidratos como um motor de carro precisa da gasolina.
O carboidrato mais simples é a glicose. A glicose, também chamada de "açúcar do sangue" e "dextrose", flui na corrente sangüínea para estar disponível a cada célula de seu corpo. Suas células absorvem glicose e a convertem na energia utilizada pela célula.
Especificamente, um conjunto de reações químicas na glicose cria ATP (adenosina tri-fosfato), e uma ligação de fosfato nas energias de ATP cria a maioria da maquinaria em uma célula humana. Se você beber uma solução de água e glicose, esta passa diretamente do sistema digestivo para a corrente sangüínea.
O carboidrato possui este nome porque a glicose é formada de carbono e água.
A fórmula química da glicose é:
C6(H2O)6
Repare que a glicose é composta de seis átomos de carbono (carbo...) e de elementos de seis moléculas de água (...hidrato). A glicose é um açúcar simples, por isso, tem um gosto doce para nossa língua.
Há outros açúcares simples dos quais você já deve ter ouvido falar. A frutose é o principal açúcar das frutas. A frutose tem a mesma fórmula química da glicose (C6h62O6), mas a organização dos átomos é um pouco diferente.
O fígado converte a frutose em glicose. A sacarose, também conhecida como "açúcar branco" ou "açúcar de mesa", é constituída de uma molécula de glicose ligada a uma de frutose. A lactose (açúcar encontrado no leite) é produzida a partir de uma molécula de glicose ligada a uma de galactose.
A galactose, como a frutose, tem os mesmos componentes químicos que a glicose, mas a organização dos átomos é diferente. O fígado também converte a galactose em glicose. A maltose, o açúcar encontrado no malte, é produzido a partir da ligação de dois átomos de glicose.
A glicose, a frutose e a galactose são monossacarídeos e são os únicos carboidratos que podem ser absorvidos pela corrente sangüínea através da parte interna do intestino. A lactose, a sacarose e a maltose são dissacarídeos (eles contêm dois monossacarídeos) e são facilmente convertidos em suas bases monossacarídeas pelas enzimas no trato digestivo.
Monossacarídeos e dissacarídeos são chamados de carboidratos simples. Eles também são açúcares, têm sabor doce, são digeridos e entram na corrente sangüínea de forma muito rápida. Ao olhar o rótulo de "informações nutricionais" de uma embalagem de alimentos e vir "açúcares" abaixo da parte que fala de "Carboidratos", é desses açúcares simples que o rótulo está falando.
Também existem carboidratos complexos, normalmente conhecidos como "amidos". Um carboidrato complexo é composto de cadeias de moléculas de glicose. Amidos são a maneira que as plantas usam para armazenar energia - elas produzem glicose e formam cadeias com estas moléculas para formá-los.
A maioria dos grãos (trigo, milho, aveia, arroz) e alimentos como batatas e bananas são ricos em carboidratos complexos. Seu sistema digestivo quebra um carboidrato complexo em moléculas de glicose para que esta glicose possa entrar na sua corrente sangüínea. No entanto, leva muito mais tempo para quebrar o amido.
Se você beber uma lata de refrigerante cheia de açúcar, a glicose entrará na corrente sangüínea em uma taxa de 30 calorias por minuto. Um carboidrato complexo integral é digerido muito mais vagarosamente, o que faz com que a glicose entre na corrente sangüínea a uma taxa de apenas duas calorias por minuto.
Você pode ter ouvido falar que comer carboidratos complexos faz bem, mas que o açúcar não. Você pode até mesmo ter sentido isso no seu próprio corpo. A seguinte citação do Guia para a Nutrição das Crianças de Yale explica por que:
Se os carboidratos complexos integrais são quebrados em monossacarídeos nos intestinos, antes de serem absorvidos pela corrente sangüínea, porque eles são melhores do que o açúcar refinado ou outros di- ou mono-sacarídeos? Isso tem muito a ver com o processo de digestão e absorção.
Os açúcares simples requerem pouca digestão, e quando uma criança come um alimento doce (como uma barra de chocolate recheado ou uma lata de refrigerante) o nível de glicose do sangue se eleva rapidamente. Em resposta, o pâncreas produz uma grande quantidade de insulina para evitar que os níveis de glicose no sangue se elevem muito.
Esta grande resposta de insulina, por sua vez, tende a fazer o nível de açúcar do sangue cair depois de 3 a 5 horas depois da barra de chocolate ou da lata de refrigerante ser consumida. Esta tendência de queda do nível de glicose no sangue pode, então, levar ao surgimento da adrenalina, que por sua vez pode causar nervosismo ou irritabilidade.
O mesmo "efeito montanha russa" de níveis de glicose e hormônios não ocorre depois de comer carboidratos complexos integrais ou após ter uma refeição balanceada, porque os processos de digestão e absorção são muito lentos.
Pensando bem, isto é muito interessante porque mostra que os alimentos que você consome e o modo com que faz isto podem afetar seu humor e seu temperamento. Os alimentos afetam os níveis dos hormônios em sua circulação sanguínea por muito tempo.
Outra coisa interessante sobre esta citação é a menção da insulina. Acontece que a insulina é muito importante para o modo que o corpo usa a glicose que a alimentação fornece.
As funções da insulina são:
possibilitar que a glicose seja transportada pelas membranas das células;
converter a glicose em glicogênio para ser armazenado no fígado e músculos;
ajudar o excesso de glicose a ser convertido em gordura;
evitar a quebra de proteína para não faltar energia.
O carboidrato mais simples é a glicose. A glicose, também chamada de "açúcar do sangue" e "dextrose", flui na corrente sangüínea para estar disponível a cada célula de seu corpo. Suas células absorvem glicose e a convertem na energia utilizada pela célula.
Especificamente, um conjunto de reações químicas na glicose cria ATP (adenosina tri-fosfato), e uma ligação de fosfato nas energias de ATP cria a maioria da maquinaria em uma célula humana. Se você beber uma solução de água e glicose, esta passa diretamente do sistema digestivo para a corrente sangüínea.
O carboidrato possui este nome porque a glicose é formada de carbono e água.
A fórmula química da glicose é:
C6(H2O)6
Repare que a glicose é composta de seis átomos de carbono (carbo...) e de elementos de seis moléculas de água (...hidrato). A glicose é um açúcar simples, por isso, tem um gosto doce para nossa língua.
Há outros açúcares simples dos quais você já deve ter ouvido falar. A frutose é o principal açúcar das frutas. A frutose tem a mesma fórmula química da glicose (C6h62O6), mas a organização dos átomos é um pouco diferente.
O fígado converte a frutose em glicose. A sacarose, também conhecida como "açúcar branco" ou "açúcar de mesa", é constituída de uma molécula de glicose ligada a uma de frutose. A lactose (açúcar encontrado no leite) é produzida a partir de uma molécula de glicose ligada a uma de galactose.
A galactose, como a frutose, tem os mesmos componentes químicos que a glicose, mas a organização dos átomos é diferente. O fígado também converte a galactose em glicose. A maltose, o açúcar encontrado no malte, é produzido a partir da ligação de dois átomos de glicose.
A glicose, a frutose e a galactose são monossacarídeos e são os únicos carboidratos que podem ser absorvidos pela corrente sangüínea através da parte interna do intestino. A lactose, a sacarose e a maltose são dissacarídeos (eles contêm dois monossacarídeos) e são facilmente convertidos em suas bases monossacarídeas pelas enzimas no trato digestivo.
Monossacarídeos e dissacarídeos são chamados de carboidratos simples. Eles também são açúcares, têm sabor doce, são digeridos e entram na corrente sangüínea de forma muito rápida. Ao olhar o rótulo de "informações nutricionais" de uma embalagem de alimentos e vir "açúcares" abaixo da parte que fala de "Carboidratos", é desses açúcares simples que o rótulo está falando.
Também existem carboidratos complexos, normalmente conhecidos como "amidos". Um carboidrato complexo é composto de cadeias de moléculas de glicose. Amidos são a maneira que as plantas usam para armazenar energia - elas produzem glicose e formam cadeias com estas moléculas para formá-los.
A maioria dos grãos (trigo, milho, aveia, arroz) e alimentos como batatas e bananas são ricos em carboidratos complexos. Seu sistema digestivo quebra um carboidrato complexo em moléculas de glicose para que esta glicose possa entrar na sua corrente sangüínea. No entanto, leva muito mais tempo para quebrar o amido.
Se você beber uma lata de refrigerante cheia de açúcar, a glicose entrará na corrente sangüínea em uma taxa de 30 calorias por minuto. Um carboidrato complexo integral é digerido muito mais vagarosamente, o que faz com que a glicose entre na corrente sangüínea a uma taxa de apenas duas calorias por minuto.
Você pode ter ouvido falar que comer carboidratos complexos faz bem, mas que o açúcar não. Você pode até mesmo ter sentido isso no seu próprio corpo. A seguinte citação do Guia para a Nutrição das Crianças de Yale explica por que:
Se os carboidratos complexos integrais são quebrados em monossacarídeos nos intestinos, antes de serem absorvidos pela corrente sangüínea, porque eles são melhores do que o açúcar refinado ou outros di- ou mono-sacarídeos? Isso tem muito a ver com o processo de digestão e absorção.
Os açúcares simples requerem pouca digestão, e quando uma criança come um alimento doce (como uma barra de chocolate recheado ou uma lata de refrigerante) o nível de glicose do sangue se eleva rapidamente. Em resposta, o pâncreas produz uma grande quantidade de insulina para evitar que os níveis de glicose no sangue se elevem muito.
Esta grande resposta de insulina, por sua vez, tende a fazer o nível de açúcar do sangue cair depois de 3 a 5 horas depois da barra de chocolate ou da lata de refrigerante ser consumida. Esta tendência de queda do nível de glicose no sangue pode, então, levar ao surgimento da adrenalina, que por sua vez pode causar nervosismo ou irritabilidade.
O mesmo "efeito montanha russa" de níveis de glicose e hormônios não ocorre depois de comer carboidratos complexos integrais ou após ter uma refeição balanceada, porque os processos de digestão e absorção são muito lentos.
Pensando bem, isto é muito interessante porque mostra que os alimentos que você consome e o modo com que faz isto podem afetar seu humor e seu temperamento. Os alimentos afetam os níveis dos hormônios em sua circulação sanguínea por muito tempo.
Outra coisa interessante sobre esta citação é a menção da insulina. Acontece que a insulina é muito importante para o modo que o corpo usa a glicose que a alimentação fornece.
As funções da insulina são:
possibilitar que a glicose seja transportada pelas membranas das células;
converter a glicose em glicogênio para ser armazenado no fígado e músculos;
ajudar o excesso de glicose a ser convertido em gordura;
evitar a quebra de proteína para não faltar energia.
Os carboidratos são açúcares e participam da dieta de grande parte do mundo. Estão presentes em bolos, pães e biscoitos e é a partir da oxidação dessas biomoléculas que tem-se a principal via metabólica de obtenção de energia para a maioria das células não fotossintetizantes. Esta propriedade constitui uma das principais características dos carboidratos, pois estes ainda participam de estruturas como a parede celular de bactérias e de células vegetais, do glicocálix das células de organismos multicelulares, além de participarem da composição de líquidos lubrificantes nas articulações e no reconhecimento e da coesão célula-célula, dentre outras funções. Os hidratos de carbono (carboidratos) são, em sua maior parte, poliidroxialdeídos ou poliidroxicetonas cíclicos ou substâncias que quando hidrolisadas liberam esses compostos. Sua fórmula geral é (CH2O)n podendo apresentar em sua estrutura átomos de nitrogênio, enxofre ou fósforo. A classificação dos carboidratos é feita de acordo com o tamanho que estes assumem. São então classificados como monossacarídeos, oligossacarídeos ou polissacarídeos. Os carboidratos também podem ser encontrados em associação com outras biomoléculas, sejam elas proteínas ou lipídios, que, de uma forma geral, originam os chamados glicoconjugados.
Monossacarídeos
São os açúcares simples, como a D-gilcose (monossacarídeo mais abundante), ou a D-frutose, e que têm como propriedades físicas o fato de serem incolores, solúveis em meio aquoso, formarem sólidos cristalinos e possuírem sabor adocicado.
D-glicose (aldohexose)
D-frutose (cetohexose)
A estrutura de um monossacarídeo consiste em uma cadeia carbônica não-ramificada, apresentando ligações simples entre os carbonos. Um ou mais desses carbonos estão ligados a grupos hidroxilas, podendo haver carbonos assimétricos chamados de centros quirais. Esse tipo de carboidrato apresenta ainda um grupo carbonila, que define se é um aldeído ou uma cetona.
Carbonos Assimétricos
D-gliceraldeído
D-ribose
D-glicose
Os monossacarídeos mais simples são constituídos por três átomos de carbono, como é o caso do gliceraldeído e da diidroxicetona, porém as unidades monossacarídicas podem ter quatro, cinco, seis, sete átomos de carbono, recebendo nome de tetroses, pentoses e assim por diante. As tetroses e todos os outros monossacarídeos em solução aquosa ocorrem como estruturas cíclicas, onde o grupo carbonila reage com um grupo hidroxila da mesma molécula aumentando a complexidade desta e permitindo a formação de estereoisômeros a e ß, formando derivados chamados de hemicetais ou hemiacetais. Os anéis assim formados por seis elementos podem ser piranosídicos, quando há cinco ou mais carbonos na cadeia carbônica, ou furanosídicos, formados por cinco átomos no anel.
Os monossacarídeos podem ser considerados como agentes redutores por poder serem oxidados com íons férrico (Fe3+) ou cúprico (Cu2+).
Oligossacarídeos
São constituídos pela união de duas ou mais unidades monossacarídicas. Os dissacarídeos são os oligossacarídeos mais comuns. Constituem-se a partir da união de monossacarídeos ligados covalentemente por ligação O-glicosídica, que ocorre quando um grupo hidroxila de uma molécula reage com o carbono anomérico da outra. Há, assim, a formação de acetal a partir de um hemicetal e de um álcool (um grupo hidroxila da 2ª molécula de açúcar).
Formação da Ligação Glicosídica
a-D-glicose
ß-D-glicose
Maltose
Em azul e verde vê-se as extremidades hemicetais da a-Dglicose e da ß-D-glicose participando da ligação glicosídica acetal (em laranja) para a formação da maltose. Observe que depois da ligação glicosídica estabelecida ainda resta uma extremidade hemicetal livre, indicando que a maltose é um açúcar redutor. Já a sacarose (açúcar comum elaborado pelos vegetais), formada por glicose e frutose possui átomos de carbonos anoméricos de ambos os monossacarídeos envolvidos na ligação glicosídica. A sacarose é portanto um açúcar não-redutor. Vale lembrar que açúcares não redutores são também chamados de glicosídios e que ao participarem de uma ligação glicosídica, seus carbonos anoméricos não podem mais ser oxidado por íons férrico(Fe3+) ou cúprico(Cu2+), não podendo agir como agente redutor nem apresentar forma linear.
Sacarose, um açúcar não redutor
Há outro tipo de ligação glicosídica que reúne o átomo de carbono anomérico de um açúcar a um átomo de nitrogênio em uma glicoproteína. São as chamadas ligações N-glicosil, também encontradas em todos os nucleotídeos.
Polissacarídeos
São também chamados de glicanos e diferem entre si na identidade das unidades monossacarídicas que possuem e do tipo de ligação que fazem, no comprimento da cadeia de suas moléculas, e no grau de ramificação desta. De acordo com o tipo de unidades monossacarídicas, podem ser classificadas em: homopolissacarídeos ou heteropolissacarídeos. Os homopolissacarídeos são aqueles constituídos por apenas uma unidade monomérica e são formas de armazenamento de monossacarídeos que servirão de reserva energética, como o amido e o glicogênio, ou ainda como elementos estruturais, tal qual é o caso da celulose na parede bacteriana ou o da quitina, componente do exoesqueleto de artrópodes. O amido e o glicogênio são constituídos por unidades de D-glicose unidas por ligações a1?4, sendo o amido composto por amilose e amilopectina. O primeiro componente do amido é uma cadeia linear não-ramificada e o segundo apresenta pontos de ramificação, onde as ligações são do tipo a1?6. Já o glicogênio, assim como a amilopectina, apresenta-se bastante ramificado, porém mais do que esta última. Além disso, é encontrado nas células animais em forma de grãos ou grânulos mais compactados do que aqueles de amido nos vegetais. Vale lembrar que a conformação mais estável para ligações do tipo a1?4 é a helicoidal compactada e estabilizada por pontes de hidrogênio. A celulose e a quitina, diferentemente do amido e do glicogênio, apresentam ligações glicosídicas do tipo ß1?4 nas cadeias lineares, o que lhes confere estrutura tridimensional e propriedades físicas diferentes. A celulose apresenta-se como polímeros de ß-D-glicose, representado por uma série de anéis piranosídicos rígidos, mas onde a ligação C-O possui liberdade de rotação e cuja conformação mais estável é a de “cadeira’ rodada 180° em relação às unidades monossacarídicas vizinhas, o que lhe confere um rede estabilizadora de pontes de hidrogênio com intracadeias de grande resistência á tensão. A quitina difere da celulose basicamente por ser composta por unidade de N-acetilglicosamida e por ter um grupo amino acetilado em C2 ao invés de um grupo hidroxila, tal qual ocorre na celulose. Os heteropolissacarídeos estão representados pelos peptidoglicanos, componentes das paredes bacterianas, e pelos glicosaminoglicanos, presentes na matriz extracelular de animais superiores. Os peptidoglicanos são formados por unidades alternadas de N-acetilglicosamida e ácido N-acetilmurânico, ligados por ligações do tipo ß1?4. Em bactérias, as ligações cruzadas que estabelecem com proteínas fazem com que este polissacarídeo ligue-se fortemente a um revestimento da célula bacteriana conferindo à bactéria resistência e proteção contra a lise por osmose. O emprego de antibióticos como a penicilina inibem a formação das ligações cruzadas. Os glicosaminoglicanos, por sua vez, são polímeros lineares com unidades repetitivas de dissacarídeos, sendo um de seus monossacarídeos a N-acetilglicosamida ou a N-acetilgalactosamina. A outra unidade monomérica é o ácido urômico (ácido D-glicurônico ou L-irudônico), o qual confere carga negativa ao polímero. Assim, em solução aquosa, este assume uma conformação estendida. Os glicosaminoglicanos ligados á proteínas são chamados de proteoglicanos.
Glicoconjugados
Os glicoconjugados participam de estruturas como a membrana celular e a matriz extracelular, além de serem portadores de informações, podendo fornecer o endereçamento de proteínas, reconhecimento célula-célula e nada mais são do que associação de carboidratos, sejam eles oligossacarídeos ou polissacarídeos, com lipídios ou proteínas. As glicoproteínas são formadas pela associação de carboidratos com proteínas como o próprio nome sugere. A ligação com a proteína se dá pela ligação do carboidrato com a hidroxila do resíduo de serina ou treonina (O-ligados), por meio do carbono anomérico. A ligação glicosídica pode também ser do tipo N-ligada, quando a ligação se dá com o nitrogênio da função amida do resíduo de Asn. A associação do carboidrato à proteína pode alterar a solubilidade desta ou ainda intervir na seqüência de eventos que se processam no seu enovelamento (estrutura terciária), no caso de proteínas recém sintetizadas. Lipídios também podem se associar aos açúcares e passam a ser chamados de glicolipídeos ou lipopolissacarídeos. Os gangliosídios, por exemplo, são componentes das membranas celulares de eucariotos e podem determinar, no caso das hemácias, os tipos de grupos sangüíneos. Já os lipopolissacarídeos estão presentes nas membranas de bactérias gram-negativas, o que ajuda o sistema imune do organismo infectado a reconhecer a presença de algo que não lhe é próprio e combatê-lo.
Fonte: www.bioq.unb.br
Monossacarídeos
São os açúcares simples, como a D-gilcose (monossacarídeo mais abundante), ou a D-frutose, e que têm como propriedades físicas o fato de serem incolores, solúveis em meio aquoso, formarem sólidos cristalinos e possuírem sabor adocicado.
D-glicose (aldohexose)
D-frutose (cetohexose)
A estrutura de um monossacarídeo consiste em uma cadeia carbônica não-ramificada, apresentando ligações simples entre os carbonos. Um ou mais desses carbonos estão ligados a grupos hidroxilas, podendo haver carbonos assimétricos chamados de centros quirais. Esse tipo de carboidrato apresenta ainda um grupo carbonila, que define se é um aldeído ou uma cetona.
Carbonos Assimétricos
D-gliceraldeído
D-ribose
D-glicose
Os monossacarídeos mais simples são constituídos por três átomos de carbono, como é o caso do gliceraldeído e da diidroxicetona, porém as unidades monossacarídicas podem ter quatro, cinco, seis, sete átomos de carbono, recebendo nome de tetroses, pentoses e assim por diante. As tetroses e todos os outros monossacarídeos em solução aquosa ocorrem como estruturas cíclicas, onde o grupo carbonila reage com um grupo hidroxila da mesma molécula aumentando a complexidade desta e permitindo a formação de estereoisômeros a e ß, formando derivados chamados de hemicetais ou hemiacetais. Os anéis assim formados por seis elementos podem ser piranosídicos, quando há cinco ou mais carbonos na cadeia carbônica, ou furanosídicos, formados por cinco átomos no anel.
Os monossacarídeos podem ser considerados como agentes redutores por poder serem oxidados com íons férrico (Fe3+) ou cúprico (Cu2+).
Oligossacarídeos
São constituídos pela união de duas ou mais unidades monossacarídicas. Os dissacarídeos são os oligossacarídeos mais comuns. Constituem-se a partir da união de monossacarídeos ligados covalentemente por ligação O-glicosídica, que ocorre quando um grupo hidroxila de uma molécula reage com o carbono anomérico da outra. Há, assim, a formação de acetal a partir de um hemicetal e de um álcool (um grupo hidroxila da 2ª molécula de açúcar).
Formação da Ligação Glicosídica
a-D-glicose
ß-D-glicose
Maltose
Em azul e verde vê-se as extremidades hemicetais da a-Dglicose e da ß-D-glicose participando da ligação glicosídica acetal (em laranja) para a formação da maltose. Observe que depois da ligação glicosídica estabelecida ainda resta uma extremidade hemicetal livre, indicando que a maltose é um açúcar redutor. Já a sacarose (açúcar comum elaborado pelos vegetais), formada por glicose e frutose possui átomos de carbonos anoméricos de ambos os monossacarídeos envolvidos na ligação glicosídica. A sacarose é portanto um açúcar não-redutor. Vale lembrar que açúcares não redutores são também chamados de glicosídios e que ao participarem de uma ligação glicosídica, seus carbonos anoméricos não podem mais ser oxidado por íons férrico(Fe3+) ou cúprico(Cu2+), não podendo agir como agente redutor nem apresentar forma linear.
Sacarose, um açúcar não redutor
Há outro tipo de ligação glicosídica que reúne o átomo de carbono anomérico de um açúcar a um átomo de nitrogênio em uma glicoproteína. São as chamadas ligações N-glicosil, também encontradas em todos os nucleotídeos.
Polissacarídeos
São também chamados de glicanos e diferem entre si na identidade das unidades monossacarídicas que possuem e do tipo de ligação que fazem, no comprimento da cadeia de suas moléculas, e no grau de ramificação desta. De acordo com o tipo de unidades monossacarídicas, podem ser classificadas em: homopolissacarídeos ou heteropolissacarídeos. Os homopolissacarídeos são aqueles constituídos por apenas uma unidade monomérica e são formas de armazenamento de monossacarídeos que servirão de reserva energética, como o amido e o glicogênio, ou ainda como elementos estruturais, tal qual é o caso da celulose na parede bacteriana ou o da quitina, componente do exoesqueleto de artrópodes. O amido e o glicogênio são constituídos por unidades de D-glicose unidas por ligações a1?4, sendo o amido composto por amilose e amilopectina. O primeiro componente do amido é uma cadeia linear não-ramificada e o segundo apresenta pontos de ramificação, onde as ligações são do tipo a1?6. Já o glicogênio, assim como a amilopectina, apresenta-se bastante ramificado, porém mais do que esta última. Além disso, é encontrado nas células animais em forma de grãos ou grânulos mais compactados do que aqueles de amido nos vegetais. Vale lembrar que a conformação mais estável para ligações do tipo a1?4 é a helicoidal compactada e estabilizada por pontes de hidrogênio. A celulose e a quitina, diferentemente do amido e do glicogênio, apresentam ligações glicosídicas do tipo ß1?4 nas cadeias lineares, o que lhes confere estrutura tridimensional e propriedades físicas diferentes. A celulose apresenta-se como polímeros de ß-D-glicose, representado por uma série de anéis piranosídicos rígidos, mas onde a ligação C-O possui liberdade de rotação e cuja conformação mais estável é a de “cadeira’ rodada 180° em relação às unidades monossacarídicas vizinhas, o que lhe confere um rede estabilizadora de pontes de hidrogênio com intracadeias de grande resistência á tensão. A quitina difere da celulose basicamente por ser composta por unidade de N-acetilglicosamida e por ter um grupo amino acetilado em C2 ao invés de um grupo hidroxila, tal qual ocorre na celulose. Os heteropolissacarídeos estão representados pelos peptidoglicanos, componentes das paredes bacterianas, e pelos glicosaminoglicanos, presentes na matriz extracelular de animais superiores. Os peptidoglicanos são formados por unidades alternadas de N-acetilglicosamida e ácido N-acetilmurânico, ligados por ligações do tipo ß1?4. Em bactérias, as ligações cruzadas que estabelecem com proteínas fazem com que este polissacarídeo ligue-se fortemente a um revestimento da célula bacteriana conferindo à bactéria resistência e proteção contra a lise por osmose. O emprego de antibióticos como a penicilina inibem a formação das ligações cruzadas. Os glicosaminoglicanos, por sua vez, são polímeros lineares com unidades repetitivas de dissacarídeos, sendo um de seus monossacarídeos a N-acetilglicosamida ou a N-acetilgalactosamina. A outra unidade monomérica é o ácido urômico (ácido D-glicurônico ou L-irudônico), o qual confere carga negativa ao polímero. Assim, em solução aquosa, este assume uma conformação estendida. Os glicosaminoglicanos ligados á proteínas são chamados de proteoglicanos.
Glicoconjugados
Os glicoconjugados participam de estruturas como a membrana celular e a matriz extracelular, além de serem portadores de informações, podendo fornecer o endereçamento de proteínas, reconhecimento célula-célula e nada mais são do que associação de carboidratos, sejam eles oligossacarídeos ou polissacarídeos, com lipídios ou proteínas. As glicoproteínas são formadas pela associação de carboidratos com proteínas como o próprio nome sugere. A ligação com a proteína se dá pela ligação do carboidrato com a hidroxila do resíduo de serina ou treonina (O-ligados), por meio do carbono anomérico. A ligação glicosídica pode também ser do tipo N-ligada, quando a ligação se dá com o nitrogênio da função amida do resíduo de Asn. A associação do carboidrato à proteína pode alterar a solubilidade desta ou ainda intervir na seqüência de eventos que se processam no seu enovelamento (estrutura terciária), no caso de proteínas recém sintetizadas. Lipídios também podem se associar aos açúcares e passam a ser chamados de glicolipídeos ou lipopolissacarídeos. Os gangliosídios, por exemplo, são componentes das membranas celulares de eucariotos e podem determinar, no caso das hemácias, os tipos de grupos sangüíneos. Já os lipopolissacarídeos estão presentes nas membranas de bactérias gram-negativas, o que ajuda o sistema imune do organismo infectado a reconhecer a presença de algo que não lhe é próprio e combatê-lo.
Fonte: www.bioq.unb.br
0 comentários:
Postar um comentário