Tecnologia do Blogger.
Mostrando postagens com marcador Corpo Humano. Mostrar todas as postagens
Mostrando postagens com marcador Corpo Humano. Mostrar todas as postagens

5 de abr. de 2011


formação de gametas recebe o nome de gametogênese. Gametas são células haplóides, formadas em órgãos especiais denominados gônadas, e que se destinam à reprodução e perpetuação da espécie. As gônadas se dividem em masculinas e femininas. Nos animais, as gônadas masculinas são os testículos e as femininas são os ovários. É através da meiose que os testículos formam os gametas masculinos ou espermatozóides e os ovários formam os gametas femininos ou óvulos. A gametogênese animal compreende a espermatogênese e a ovogênese. A espermatogênese compreende três etapas. Durante a organogênese, numerosas células embrionárias indiferenciadas (células germinativas) permanecem no interior dos testículos. Fase de multiplicação ou germinativa: Começa por volta dos sete anos de idade. As células germinativas (2n) ou espermatogônias de 1ª ordem começam uma série de divisões mitóticas, originando espermatogônias de 2ª, 3ª ordem, até um número indeterminado de ordens. Essa etapa se prolonga por toda a vida do indivíduo. Fase de crescimento: Começa na adolescência, sob o estímulo do FSH hipofisário. As espermatogônias se organizam em dois grupos, um que continuará a fase de multiplicação e outro que passa à fase de crescimento. Na fase de crescimento, cada espermatogônia (2n) apenas aumenta de volume, tornando-se espermatócitos de 1ª ordem (2n). Essa fase é muito curta. Fase de maturação: Começa imediatamente após a fase de crescimento. Cada espermatócito de 1ª ordem sofrerá uma meiose, originando quatro espermátides (n). Cada espermátide sofre modificações e se transfigura num espermatozóide (espermiogênese). Mecanismos celulares: mitoses (multiplicação) intérfase (crescimento) meiose (maturação) espermiogênese (diferenciação) Estrutura do espermatozóide Acrossomo: Vesícula derivada do Complexo de Golgi, contendo enzimas para digerir a parede do óvulo. Núcleo: Contém o conjunto cromossômico paterno. Mitocôndrias: Fornecem energia (ATP) para o batimento flagelar. Flagelo: Estrutura locomotora que garante o deslocamento do espermatozóide até o óvulo. A ovogênese compreende, também, três fases básicas. Fase germinativa ou de multiplicação: Começa na vida intra-uterina e termina por volta da 15ª semana. As ovogônias (células germinativas) se multiplicam várias vezes. Fase de crescimento: Logo após a 1ª fase, as ovogônias aumentam de volume e se transformam em ovócitos primários ou de 1ª ordem. Essa fase se prolonga até o 7º mês de desenvolvimento (4 meses). Fase de maturação: A partir do 7º mês, todos os ovócitos primários (2n) passam por uma meiose, até o final da prófase I. Depois, toda a ovogênese paralisa e permanece assim até a adolescência. Ao nascer, a menina já possui um grande número de ovócitos primários em processo interrompido de meiose. No início da puberdade, e dali por diante, sob o estímulo do FSH e LH hipofisários, continua o processo meiótico. Mas um ovócito apenas, de cada vez, completará a meiose e a fase de maturação, originando um óvulo (n). Ao contrário da espermatogênese, cada ovócito primário formará um só óvulo e não quatro. Na 1ª divisão meiótica o ovócito primário origina duas células de tamanhos diferentes. A maior se divide e a menor (corpúsculo polar) degenera. A divisão do ovócito secundário maior dá origem a duas células de tamanhos diferentes, onde a menor degenera, restando apenas a maior que é o próprio óvulo. Isto se justifica pelo fato de que o óvulo deve conter todo o material necessário à formação do novo ser, uma vez que o espermatozóide contribui apenas com a carga genética (cromossomos).


Formas de Reprodução A reprodução é o fenômeno que permite a conservação natural das espécies. Algumas formas de reprodução são muito simples e não levam à recombinação gênica nos indivíduos. Isso caracteriza a reprodução assexuada. Já a reprodução sexuada, envolvendo maior complexidade, permite a recombinação dos genes, e conseqüentemente, a variabilidade da espécie. Por isso, ela é biologicamente mais vantajosa para os seres que a realizam. Essa vantagem reside no fato de que, não sendo todos os indivíduos de uma mesma espécie rigorosamente iguais entre si, qualquer fator de destruição, como uma praga, por exemplo, nunca afetará todos os integrantes daquele grupamento. Sempre haverá alguns indivíduos mais resistentes que sobreviverão e darão continuidade à vida, com possibilidade de novas gerações. Por isso, costumamos dizer que a reprodução sexuada oferece maior estabilidade ao processo de preservação das espécies e populações que a realizam. A reprodução assexuada ou agâmica é aquela que acontece sem a formação de gametas. Compreende a divisão binária e a divisão múltipla. Na divisão binária ou cissiparidade o organismo se parte ao meio, cada metade se regenera e forma dois descendentes. A divisão múltipla abrange a gemulação e a esporulação. A gemulação, gemiparidade ou brotamento se caracteriza pelo aparecimento de brotos ou gêmulas na superfície do organismo. Esses brotos se desenvolvem e formam novos organismos que se libertam ou permanecem colonialmente ligados uns aos outros. É o caso do Saccharomyces cerevisiae (fungo) e da hidra (cnidário). A esporulação acontece por meio de células reprodutoras assexuadas, chamadas de esporos, que formam novos organismos. É o caso de muitos fungos e algas. A reprodução sexuada ou gâmica é aquela em que acontece a formação de células especiais chamadas de gametas e que são produzidas em glândulas próprias denominadas gônadas. Compreende a conjugação, a fecundação, a partenogênese e a metagênese. A conjugação é uma troca de material genético entre organismos unicelulares ou mesmo entre multicelulares muito simples, de modo que os descendentes passam a apresentar uma recombinação de caracteres hereditários. Isso estimula a variabilidade da espécie. É uma forma intermediária entre a reprodução assexuada e sexuada. Ocorre em bactérias, protozoários e algas. A fecundação ou fertilização é a forma mais comum de reprodução sexuada. Consiste no encontro ou fusão de um gameta masculino com um gameta feminino, formando a célula-ovo ou zigoto. Ela pode ser externa ou interna. A fecundação é externa quando a união dos gametas ocorre no meio ambiente, fora do corpo da fêmea, geralmente na água. Acontece nos poríferos, cnidários, equinodermos, peixes e anfíbios. A fecundação é interna quando a união dos gametas ocorre no interior do corpo da fêmea. Acontece nos vegetais (gimnospermos e angiospermos), répteis, aves, mamíferos, etc. A partenogênese é a reprodução por desenvolvimento embrionário de um óvulo não fecundado que entra em processo de segmentação, originando um novo indivíduo. Nas abelhas, cada óvulo fecundado origina uma fêmea; os machos ou zangões são originados por partenogênese. A metagênese ou alternância de gerações é uma forma de reprodução encontrada nas briófitas, pteridófitas e nos celenterados. Nesses organismos ocorre uma fase assexuada (esporofítica/polipóide) e uma fase sexuada (gametofítica/medusóide).

29 de mar. de 2011


Também conhecida por TPM, é um conjunto de sintomas físicos e comportamentais que ocorrem na segunda metade do ciclo menstrual podendo ser tão severos que interfiram significativamente na vida da mulher. A TPM é uma desordem neuropsicoendócrina com sintomas que afetam a mulher na esfera biológica, psicológica e social. A tendência hoje é acreditar que a função fisiológica do ovário seja o gatilho que dispara os sintomas da síndrome alterando a atividade da serotonina (neurotransmissor) em nível de sistema nervoso central. O tratamento depende da severidade dos sintomas e incluem modificações alimentares, comportamentais e tratamentos medicamentosos. Os sintomas mais comuns incluem: Por ordem de freqüência: DESCONFORTO ABDOMINAL, MASTALGIA CEFALÉIA, FADIGA, IRRITABILIDADE, TENSÃO, HUMOR DEPRIMIDO, HUMOR LÁBIL, AUMENTO DO APETITE, ESQUECIMENTO E DIFICULDADE DE CONCENTRAÇÃO, ACNE, HIPERSENSIBILIDADE AOS ESTÍMULOS, RAIVA, CHORO FÁCIL, CALORÕES, PALPITAÇÕES e TONTURAS. Irritabilidade (nervosismo), Ansiedade (alteração do humor com sentimentos de hostilidade e raiva), Depressão (com sensação de desvalia, distúrbio do sono, dificuldade de concentração) Cefaléia (dor de cabeça), Mastalgia (dor ou aumento da sensibilidade das mamas), Retenção de líquidos (inchaço ou dor nas pernas), Cansaço, Desejos por alguns alimentos como chocolates, doces e comidas salgadas. Deve ser realizado um controle objetivo do ciclo menstrual (através de um diário) pelo período mínimo de dois ciclos. Devem ser excluídos outros transtornos como hiper ou hipotireoidismo, perimenopausa, enxaqueca, fadiga crônica, síndrome do intestino irritável ou exacerbação pré-menstrual de doenças psiquátricas; depressão, que pode se intensificar nesse período (magnificação pré- menstrual). História, exame físico cuidadoso, avaliação endócrina ginecológica quando o ciclo menstrual é irregular, perfil bioquímico, hemograma e TSH para excluir condições médicas que podem apresentar sintomas que simulem uma TPM. Importante fazer o diagnóstico diferencial com a condição psiquiátrica: distúbio disfórico pré-menstrual. O tratamento medicamentoso inclui o manejo específico de cada sintoma e deve ser individualizado. A maioria dos tratamentos medicamentosos propostos não se mostraram mais eficazes do que tratamentos placebo (progesterona, espironolactona, óleo de prímula e vitaminas B6 e E, ingestão de cálcio e magnésio). A fluoxetina, foi a única droga que mostrou eficácia, entretanto foi aprovada pelo FDA apenas para PMDD (Forma mais severa de TPM, com prevalência dos sintomas de raiva, irritabilidade e tensão). Na Europa esta droga não é aprovada na Europa para uso nem mesmo em PMDD. Medidas preventivas são igualmente importantes e incluem: orientação: explicar que a TPM não é grave e que os sintomas podem variar a cada ciclo, modificações alimentares com diminuição da gordura, sal, açúcar e cafeína (café, chá, bebidas a base de colas), fracionamento das refeições, dieta com boas fontes de cálcio (leite e iogurte desnatado) e magnésio (espinafre), diminuição da ingestão de álcool, parar de fumar, fazer exercícios regulares (aeróbicos: 20 minutos 3 vezes por semana), manejar o estresse. Perguntas que você pode fazer ao seu médico O que eu sinto naqueles dias antes do período menstrual são "coisas da minha cabeça"? Os sintomas desagradáveis que surgem antes da menstruação podem ser considerados uma doença? Existe tratamento para a Síndrome de Tensão Pré-Menstrual? Qual o critério para determinar a gravidade da TPM? Quando a TPM é caracterizada como desordem disfórica pré-menstrual? Quando é necessário acompanhamento psiquiátrico para TPM? Fazer exercícios físicos e de relaxamento ajudam no tratamento da TPM? Quais os alimentos mais indicados para estes dias? Deve usar vitaminas ou suplementos alimentares para ajudar na melhora dos sintomas? Devo suspender o uso de álcool e cigarros?

6 de fev. de 2011

Google desenvolve aplicativo em 3D para o corpo humano


O Google, maior site de buscas do mundo, desenvolveu um novo aplicativo que permite explorar o corpo humano em detalhe, o Google Body Browser.
A ferramenta ainda está em fase de testes e funciona somente em navegadores que possuem webGL, uma tecnologia que permite visualização 3D em páginas da internet sem a necessidade de nenhum aplicativo adicional, como as novas versões do Mozilla Firefox e do Google Chrome.
O Google Body Browser funciona de maneira parecida com o Google Earth, e permite navegar pelos diversos sistemas do corpo humano, ampliar e identificar órgãos, músculos, ossos e tecidos.
O produto foi criado inicialmente para explorar as possibilidades da nova tecnologia, e ainda não se sabe quando será lançado.
O webGL deverá ser um recurso padrão em navegadores a partir de 2011.

8 de nov. de 2010

38 curiosidades sobre o corpo humano

. É verdade que não se consegue digerir o chiclete, mas se engolires um, ela não se cola ao estômago, por isso, não faz mal engoli-lo.

2. Ao lamber um selo se consome 1 décimo de caloria.

3. O nosso estômago tem de produzir uma nova camada de muco de 2 em 2 semanas. Caso contrário digeria-se a ele próprio.

4. É impossível espirrar com os olhos abertos. (NÃO TENTEM ISTO EM CASA).

5. As pessoas inteligentes têm mais cobre e zinco no cabelo.

6. O músculo mais potente do corpo é a língua.

7. É impossível suicidar-se parando a respiração.

8. Os nossos olhos são sempre do mesmo tamanho, desde o nascimento, enquanto que as orelhas e o nariz nunca param de crescer.

9. É impossível lamber o cotovelo.

10. O suor não tem odor. São as bactérias da pele que criam o cheiro.

11. Apenas uma pessoa em cada 2 bilhões viverá mais de 116 anos.

12. Se gritares durante 8 anos, 7 meses e 6 dias, a energia libertada é igual à necessária para aquecer uma chávena de café.

13. O coração bombeia o sangue com uma pressão suficiente para esguichar o sangue a uma altura de 9 metros.

14. Os destros vivem em média 9 anos a mais do que os canhotos.

15. Uma pessoa pisca os olhos aproximadamente 25 mil vezes por dia.

16. Se as doenças do coração, o cancro e os diabetes fossem erradicados, a expectativa de vida do homem seria de 99,2 anos.

17. A cada ano, 98% dos átomos do nosso corpo são substituídos.

18. O crânio tem 29 ossos.

19. As unhas da mão crescem aproximadamente 4 vezes mais rápido que as do pé.

20. Os pés possuem um quarto dos nossos ossos.

21. 15 vezes ao dia é o número médio de vezes que um adulto normal dá risada. No entanto uma criança ri em média 400 vezes por dia.

22. 4 kg é o peso do cérebro humano. Este consome 25% do oxigênio que respiramos.

23. Uma pessoa normal tem á volta de 1460 sonhos por ano.

24. Todos temos 300 ossos quando nascemos, mas chegamos a adultos apenas com 206.

25. A força necessária para dar três espirros consecutivos, queima exatamente o mesmo numero de calorias que um orgasmo.

26. Cada soluço dura menos de 1 segundo e ocorrem com um frequência normal e regular de 5 a 25 vezes por minuto. O livro dos recordes menciona um soluço que durou 57 anos.

27. Por cada sílaba que o homem fala, 72 músculos entram em movimento. Para sorrir, são utilizados 14 músculos. Para beijar, 29.

28. O intestino delgado mede entre 6 a 9 metros. O intestino grosso tem 1,5 metros, mas é 3 vezes mais largo.

29. Um adulto elimina 3 litros de água por dia, por meio da urina, suor e da respiração.

30. O corpo humano é formado por 70% de água, que corresponde a metade do nosso peso. No organismo, a água transporta alimentos, resíduos e sair minerais; lubrifica tecidos e articulações; conduz glicose e oxigênio para o interior das células, e regula a temperatura.

31. Se não exercitarmos o que aprendemos, esquecemos 25% em seis horas, 33% em 24 horas e 90% em seis meses.

32. Com uma média de 70 batidas por minuto, o coração bate 37 milhões de vezes por ano.

33. Se dormirmos, em média, 8 horas por dia, aos 40 anos teremos dormido 13 anos.

34. O olho humano é capaz de distinguir 10.000.000 de diferentes tonalidades.

35. Você fala sem pensar? Os cientistas calcularam que a velocidade de um pensamento é de 240 km/h!

36. O esqueleto de um homem de 64 quilos pesa cerca de 11 quilos.

37. Em média, uma criança de 4 anos faz 437 perguntas por dia.

38. Numa vida, um ser humano passa, em média, 8 anos em filas de espera.

14 de mai. de 2010

Álcool no organismo

O álcool é absorvido principalmente no intestino delgado, e em menores quantidades no estômago e no cólon. A concentração do álcool que chega ao sangue depende de fatores como: quantidade de álcool consumida em um determinado tempo, massa corporal, e metabolismo de quem bebe, quantidade de comida no estômago. Quando o álcool já está no sangue, não há comida ou bebida que interfira em seus efeitos. Os efeitos do álcool dependem de fatores como: a quantidade de álcool ingerido em determinado período, uso anterior de álcool e a concentração de álcool no sangue. O uso do álcool causa desde uma sensação de calor até o coma e a morte dependendo da concentração que o álcool atinge no sangue.

Os sintomas que se observam são:
- Doses até 99mg/dl: sensação de calor/rubor facial, prejuízo de julgamento, diminuição da inibição, coordenação reduzida e euforia;

- Doses entre 100 e 199mg/dl: aumento do prejuízo do julgamento, humor instável, diminuição da atenção, diminuição dos reflexos e incoordenação motora;

- Doses entre 200 e 299mg/dl: fala arrastada, visão dupla, prejuízo de memória e da capacidade de concentração, diminuição de resposta a estímulos, vômitos;

- Doses entre 300 e 399mg/dl: anestesia, lapsos de memória, sonolência;

- Doses maiores de 400mg/dl: insuficiência respiratória, coma, morte.

Um curto período (8 a 12 horas) após a ingestão de grande quantidade de álcool pode ocorrer a "ressaca", que caracteriza-se por: dor de cabeça, náusea, tremores e vômitos. Isso ocorre tanto devido ao efeito direto do álcool ou outros componentes da bebida. Ou pode ser resultado de uma reação de adaptação do organismo aos efeitos do álcool.

A combinação do álcool com outras drogas (cocaína, tranqüilizantes, barbituratos, antihistamínicos) pode levar ao aumento do efeito, e até mesmo à morte.

O efeitos do uso prolongado do álcool são diversos. Dentre os problemas causados diretamente pelo álcool pode-se destacar doenças do fígado, coração e do sistema digestivo. Secundariamente ao uso crônico abusivo do álcool, observa-se: perda de apetite, deficiências vitamínicas, impotência sexual ou irregularidades do ciclo menstrual.

Intoxicação alcoólica e hipoglicemia
Como já foi visto antes o álcool etílico, principal componente das bebidas alcoólicas, é metabolizado no fígado por duas reações de oxidação. Em cada reação, elétrons são transferidos ao NAD+, resultando e um aumento maciço na concentração de NADH citosólico. A abundância de NADH favorece a redução de piruvato em lactato e oxalacetato em malato, ambos são intermediários na síntese de glicose pela gliconeogênese. Assim, o aumento no NADH mediado pelo etanol faz com que os intermediários da gliconeogênese sejam desviados para rotas alternativas de reação, resultando em síntese diminuída de glicose. Isto pode acarretar hipoglicemia , particularmente em indivíduos com depósitos exauridos de glicogênio hepático. A mobilização de glicogênio hepático é a primeira defesa do corpo contra a hipoglicemia, assim, os indivíduos em jejum ou desnutridas apresentam depósitos de glicogênio exauridos, e devem basear-se na gliconeogênese para manter sua glicemia. A hipoglicemiaprde produzir muitos dos comportamentos associados à intoxicação alcoólica – agitação, julgamento dinimuído e agressividade. Assim, o consumo de álcool em indivíduos vulneráveis – aqueles em jejum ou que fizeram exercícios prolongado e extenuante – podem prodizir hipoglicemia, que podem contribuir para os efeitos comportamentais do álcool.

Alcoolismo agudo
Exerce os seus efeitos principalmente sobre o sistema nervoso central, mas ele pode também rapidamente induzir alterações hepáticas e gástricas que são reversíveis na ausência do consumo continuado de álcool. As alterações gástricas constituem gastrite aguda e ulceração. No sistema nervoso central, o álcool por si é um agente depressivo que afeta primeiramente as estruturas subcorticais (provavelmente a formação reticular do tronco cerebelar superior) que modulam a atividade cortical cerebral. Em conseqüência, há um estímulo e comportamentos cortical., motor e intelectual desordenados. A níveis sanguíneos progressivamente maiores, os neurônios corticais e, depois, os centros medulares inferiores são deprimidos, incluindo aqueles que regulam a respiração. Pode advir parada respiratória. Efeitos neuronais podem relacionar-se com uma função mitocondrial danificada; alterações estruturais não são em geral evidentes no alcoolismo agudo. Os teores sanguíneos de álcool e o grau de desarranjo da função do SNC em bebedores não habituais estão intimamente realcionados.

Alcoolismo crônico
É responsável pelas alterações morfológicas em praticamente todos os órgãos e tecidos do corpo, particularmente no fígado e no estômago. Somente as alterações gástricas que surgem imediatamente após a exposição pode ser relacionadas com os efeitos diretos do etanol sobre a vascularização da mucosa. A origem das outras alterações crônicas é menos clara. O acetaldeído, um metabólico oxidativo importante do etanol, é um composto bastante reativo e tem sido proposto como mediador da lesão tissular e orgânica disseminada. Embora o catabolismo do acetaldeído seja mais rápido do que o do álcool, o consumo crônico de etanol reduz a capacidade oxidativa do fígado, elevando os teores sanguíneos de acetaldeído, os quais são aumentados pelo maior ritmo de metabolismo do etanol no bebedor habitual. O aumento da atividade dos radicais livres em alcoólatras crônicos também tem sido sugerido como um mecanismo de lesão. Mais recentemente, foi acrescentado o metabolismo não-oxidativo do álcool, com a elaboração do ácido graxo etil éster, bem como mecanismos imunológicos pouco compreendidos iniciados por antígenos dos hepatócitos na lesão aguda.

Seja qual for a base, os alcoólatras crônicos têm sobrevida bastante encurtada, relacionada principalmente com lesão do fígado, estômago, cérebro e coração. O álcool é a causa bastante conhecida de lesão hepática que termina em cirrose, sangramento maciço proveniente de gastrite ou de úlcera gástrica pode ser fatal. Ademais, os alcoólatras crônicos sofrem de várias agressões ao sistema nervoso. Algumas podem ser nuticionais, como a deficiencia em vitamina B1, comum em alcoólatras crônicos. As principais lesões de origem nutricional são neuropatias periféricas e a síndrome de Wernicke-Korsakoff. Pode surgir a degeneração cerebelar e a neuropatia óptica, possivelmente relacionadas com o álcool e seus produtos, e, incomumente, pode surgir atrofia cerebral.

As conseqüências cardiovasculares também são amplas. Por outro lado, embora ainda sem consenso, quantidades moderadas de álcool podem diminuir a incidência da cardiopatia coronária e aumentar os níveis do colesterol HDL. Entretanto, o alto consumo que leva à lesão hepática resulta em níveis menores da fração HDL das lipoproteínas.

O alcoolismo crônico possui várias conseqüências adicionais, incluindo uma maior tendência para hipertensão, uma maior incidência de pancreatite aguda e crônica, e alterações regressivas dos músculos esqueléticos.

Doença hepática alcoólica (DHA) e Cirrose:
O consumo crônico de álcool resulta com frequência em três formas distintas, embora superpostas , de doenças hepáticas: (1) esteatose hepática, (2) hepatíte alcoólica e (3) cirrose, denominadas coletivamente de doença hepática alcólica. A maioria dos casos o alcoólico que continua bebendo evolui da degeneração gordurasa para ceises de hepatite alcoólicaa e para cirrose alcoólica no transcorrer de 10 a 15 anos.

(1)ESTEATOSE ALCOÓLICA (fígado gorduroso)
Dentro de poucos dias após a administração de álcool a gordura aparece dentro das células hepáticaas, representa principalmente aumento na síntese de triglicerídios em virtude do maior fornecimento de ácidos graxos ao fígado, menor oxidação dos ácidos graxos, e menor formação e liberação de lipoproteínas. Ela pode surgir sem evidências clínica ou bioquímica de doença hepática.. Por outro lado, quando o acometido é intenso, pode estar associado com mal-estar, anorexia, náuseas, distenção abdominal, hepatomegalia hipersensível, às vezes icterícia e níveis elevados de aminotransferase.

(2)HEPATITE ALCOÓLICA
Caracteriza-se principalmente por necrose aguda daas células hepáticas. Em alguns pacientes, apesar da abstinência , a hepatite perciste e progride para cirrose. Ela representa a perda relativamente brusca de reserva hepática e pode desencadear um quadro de insuficiência hepática ou, às vezes, a síndrome hepatorrenal.

(3)CIRROSE ALCOÓLICA
apesar do álcool ser a causa mais comum de cirrose no mundo ocidental, sendo responsável aí por 60 a 70% de todos os casos, é enegmático que apenas 10 a 15% dos "devotos do alambique" acabam contraindo cirrose. Existe em geral uma relação inversa entre a quantidade de gordura e a quantidade de cicatrização fibrosa. No início da evolução cirróticaa os septos fibrosos são delicados e estendem-se da veia central para as regiões portais assim como de um espaço-porta para outro. A medida que o processo de cicatrização aumenta com o passar do tempo, a nodularidade torna-se mais proeminente e os nódulos esparsos aumentam em virtude da atividade regenerativa, criando na superfície o denominado aspecto de cravo de ferradura.

A quantidade de gordura é reduzida, o fígado diminui progressivamente de tamanho, tornado-se mais fibrótico, sendo transformado em um padrão macronodular à medida que as ilhotas paraenquimatosas são envoltas por tiras cada vez mais largas de tecido fibroso. Nos casos típicos, após certos sintomas tipo mal-estar, fraqueza, redução ponderal e perda de apetite, o paciente desenvolve icterícia, ascite e edema periférico, com o último sendo devido à deterioração na síntese da albumina. A menos que o paciente evite o álçool e adote um adieta nutritiva, a evolução habitual durante um período de anos é progressivamente descendente, com a deterioração da função hepática e surgimento de hipertensão porta com suas sequelas como, por exemplo, ascite, varizes gastroesofágicas e hemorróidas.

Problemas clínicos do alcoolismo:
A ingestão contínua do álcool desgasta o organismo ao mesmo tempo em que altera a ente. Surgem, então, sintomas que comprometem a disposição para trabalhar e viver com bem estar. Essa indisposição prejudica o relacionamento com a família e diminui a produtividade no trabalho, podendo levar à desagregação familiar e ao desemprego.

Alguns dos problemas mais comuns da doença sâo:
No estômago e intestino
Gases: Sensação de "estufamento", nem sempre valorizada pelo médico. Pode ser causada por gastrite, doenças do fígado, do pâncreas, etc.

Azia: Muito comum em alcoolistas devido a problemas no esôfago.

Náuseas: São matinais e ás vezes estão associadas a tremores. Podem ser consideradas sinal precoce da dependência do álcool.

Dores abdominais: Muito comum nos alcoolistas que têm lesões no pâncreas e no estômago.

Diarréais: Nas intoxicações alcoólicas agudas (porre). Este sintoma é sinal de má absorção dos alimentos e causa desnutrição no indivíduo.

Fígado grande: Lesões no fígado decorrentes do abuso do álcool. Podem causar doenças como hepatite, cirrose, fibrose, etc.

No Sistema Cárdio Vascular
O uso sistemático do álcool pode ser danoso ao tecido do coração e elevar a pressão sangüínea causando palpitações, falta de ar e dor no tórax.

Glândulas
As glândulas são muito sensíveis aos efeitos do álcool, causando sensíveis problemas no seu funcionamento.

Impotência e perda da libido. O indivíduo alcoolista pode ter atrofiados testículos, queda de pêlos além de gincomastias(mamas crescidas).

Sangue
O álcool torna o individuo propício às infecções, alterando o quadro de leucócitos e plaquetas, o que torna freqüente as hemorragias.

A anemia é bastante comum nos alcoolistas que têm alterações na série de glóbulos vermelhos, o que pode ser causado por desnutrição (carência de ácido fólico).

Alcoolismo é doença (OMS)
É o que a medicina afirma, mas a maior dificuldade das pessoas é entender como isso funciona. Alguns acham que &Seacute; falta de vergonha; outros, que é falta de força de vontade, personalidades desajustadas, problemas sexuais, brigas familiares, etc.; outros, até, que é coisa do "capeta", outros acham que leva algum tempo para desenvolver tal "vício". A verdade é que algumas pessoas nascem com o organismo predisposto a reagir de determinada maneira quando ingerem o álcool. Aproximadamente dez em cada cem pessoas nascem com essa predisposição, mas só desenvolverão esta doença se entrarem em contato com o álcool.

O alcoolimo não é hereditátio
Apesar do alcoolismo não ser hereditário existe uma predisposição orgânica para o seu desenvolvimento, sendo, então, o alcoolismo transmissível de pais para os filhos. O desenvolvimento do alcoolismo envolve três características: a base genética, o meio e o indivíduo. Filhos de pais alcoólatras são geneticamente diferentes, porém, só desenvolverão a doença se estiverem em um meio propício e/ou características psicológicas favoráveis.

Fonte: www.virtual.epm.br

10 de mai. de 2010

Molécula da ação

Quando levamos um susto ou praticamos um esporte radical, milhares de estruturas iguais a esta são liberadas em nossa corrente sanguínea. O nosso organismo, então, fica "turbinado", pronto para enfrentar a situação de perigo ou alerta. A adrenalina é um estimulante natural.

A Adrenalina no corpo humano

A adrenalina é um hormônio e um neurotransmissor.
A adrenalina é sintetizada na medula adrenal (sobre o rim). Um sinal, que pode ser induzido através de um baixo nível de glicose, aciona o mecanismo de liberação de adrenalina no sangue. Duas enzimas são responsáveis pela rápida e eficaz degradação da adrenalina: a Catecolamina-O-metiltransferase (COMT) e a Monoaminoxidase (MAO).

Um Hormônio

A adrenalina tem o efeito oposto da insulina: é liberada quando o nível de glicose está baixo. Sua presença na corrente sanguínea aciona mecanismos de mobilização de triacilglicerídeos (gorduras) para produção de açúcar. O aumento da taxa de glicose no sangue permite a fermentação da glicose nos músculos. A adrenalina também inibe a liberação de insulina.

Um Neurotransmissor

A adrenalina atua, também, como um neurotransmissor, e tem efeito sobre o sistema nervoso simpático: coração, pulmões, vasos sanguíneos, órgãos genitais, etc. Este neurotransmissor é liberado em resposta ao stress físico ou mental, e liga-se a um grupo especial de proteínas - os receptores adrenérgicos. Seus principais efeitos são: aumento dos batimentos cardíacos, dilatação dos brônquios e pupilas, vasoconstricção, suor. entre outros.

Quando um animal é ameaçado, as opções são, geralmente, ficar e lutar, ou correr o mais rápido possível. Ambas as respostas irão requerer uma quantidade extra de oxigênio e açúcar no sangue e nos músculos. A liberação de adrenalina, então, é acionada, aumentando a velocidade de batimentos cardíacos, metabolização, e respiração.

A adrenalina está presente em muitas formulações farmacêuticas intr avenosas, principalmente no tratamento da asma, hemorragias internas, entre outros.

Síntese da Adrenalina

A primeira síntese química da adrenalina foi feita em 1904, por F. Stolz. Partindo do pirocatecol, ele prepararou a adrenalona, que foi reduzida a uma mistura racêmica de adrenalina.

Biossíntese da Adrenalina

ENZIMAS

1: Phenylalanine-hydroxylase,
2: Tyrosine-hydroxylase,
3: Aromatic amino-acid decarboxylase,
4: Dopamine--hydroxylase,
5: Phenylethanolamine- N-methyl- transferase

Cinco enzimas estão envolvidas na biossíntese da adrenalina. A biosíntese ocorre na medula adrenal. A terceira etapa é um processo de descarboxilação, de dopa para dopamina. A última etapa é uma metilação. O produto final é opticamente ativo.

Adrenalina no Infarto

Quando uma pessoa sofre uma emoção forte as glândulas adrenais (localizadas na parte superior dos rins) liberam adrenalina. Ela entra na corrente sangüínea e no coração provocando aumento dos batimento scardíacos; com isso mais sangue é bombeado para os músculos. A adrenalina estimula, ainda, uma contração dos vasos sangüíneos, que serve para "empurrar"o sangue e melhorar a irrigação em centros vitais como o cérebro. O aumento da intensidade do trabalho cardíaco e o estreitamento dos vasos podem ocasionar um infarto (morte de tecidos por falta de oxigenação), se já houver alguma artéria coronariana (as que levam sangue para o coração) semi-obstruída. Outra possibilidade é que a contração de uma artéria que já tenha certo entupimento resulte em um bloqueio total, também causando o infarto.

Adrenalina no orgasmo

Para atingir o orgasmo, o sistema nervoso envia ordens ao coração para que os batimentos cardíacos se acelerem. A adrenalina, despejada pelas glândulas adrenais, é jogada no sangue e dilata as artérias, aumentando o fluxo sanguíneo nos músculos envolvidos nas atividades sexuais. Para uma melhor oxigenação do sangue, os pulmões aumentam o seu trabalho, e a respiração se torna curta e rápida. O suor aumenta, provavelmente para dissipar o calor acumulado do corpo.

"PARENTES" DA ADRENALINA

Noradrenalina é uma molécula sintetizada no cérebro e no sistema límbico, e envolve apenas uma pequena mudança na estrutura da adrenalina. Esta molécula, entretanto, tem um propósito diferente: é um dos neurotransmissores, e está relacionado com o raciocínio e emoções. Uma de suas funções, no corpo, é manter a tonicidade muscular nos vasos sanguíneos, controlando, então, a pressão sanguínea. Pessoas que sofrem de hipertensão são tratadas, geralmente, com reserpina, uma droga que reduz a quantidade de noradrenalina nos terminais dos nervos e neurônios.

Salbutamol também é uma molécula semelhante à adrenalina. É usada para relaxar os brônquios em casos de asma; é a droga que está presente em alguns dos inaladores portáteis. Seu nome comercial é Ventolin.

Anfetaminas são químicos sintéticos com uma estrutura química semelhante a da anfetamina. Estes compostos, portanto, podem provocar respostas biológicas semelhantes, atuando como estimulantes, e criando um grande estado de alerta e euforia. O modelo para estes compostos químicos é a anfetamina, que difere da noradrenalina pela ausência dos grupos -OH e adição de um grupo metila à cadeia alquílica.
Uma outra molécula com estrutura química semelhante é a 3,4-metilenodioximetilanfetamina (MDMA),

Ecstasy; esta droga recentemente se tornou notória devido ao uso como estimulante eufórico nas raves. Seus efeitos estimulantes permitem o usuário ficar dançando por períodos muito grandes, além de provocar um estado de euforia e bem estar. Devido ao aumento excessivo do metabolismo, o usuário corre o risco de desidratação. O uso prolongado leva a vários problemas de saúde, inclusive morte.

Fonte: www.qmc.ufsc.br

7 de abr. de 2010

Adrenalina










Quando levamos um susto ou praticamos um esporte radical, milhares de estruturas iguais a esta são liberadas em nossa corrente sanguínea। O nosso organismo, então, fica "turbinado", pronto para enfrentar a situação de perigo ou alerta. A adrenalina é um estimulante natural.



















Adrenalina no corpo humano
A adrenalina é um hormônio e um neurotransmissor। A adrenalina é sintetizada na medula adrenal (sobre o rim). Um sinal, que pode ser induzido através de um baixo nível de glicose, aciona o mecanismo de liberação de adrenalina no sangue. Duas enzimas são responsáveis pela rápida e eficaz degradação da adrenalina: a Catecolamina-O-metiltransferase (COMT) e a Monoaminoxidase (MAO).








Um Hormônio
A adrenalina tem o efeito oposto da insulina: é liberada quando o nível de glicose está baixo. Sua presença na corrente sanguínea aciona mecanismos de mobilização de triacilglicerídeos (gorduras) para produção de açúcar. O aumento da taxa de glicose no sangue permite a fermentação da glicose nos músculos. A adrenalina também inibe a liberação de insulina.
Um Neurotransmissor
A adrenalina atua, também, como um neurotransmissor, e tem efeito sobre o sistema nervoso simpático: coração, pulmões, vasos sanguíneos, órgãos genitais, etc. Este neurotransmissor é liberado em resposta ao stress físico ou mental, e liga-se a um grupo especial de proteínas - os receptores adrenérgicos. Seus principais efeitos são: aumento dos batimentos cardíacos, dilatação dos brônquios e pupilas, vasoconstricção, suor. entre outros.
Quando um animal é ameaçado, as opções são, geralmente, ficar e lutar, ou correr o mais rápido possível. Ambas as respostas irão requerer uma quantidade extra de oxigênio e açúcar no sangue e nos músculos. A liberação de adrenalina, então, é acionada, aumentando a velocidade de batimentos cardíacos, metabolização, e respiração.
A adrenalina está presente em muitas formulações farmacêuticas intr avenosas, principalmente no tratamento da asma, hemorragias internas, entre outros.
Síntese da Adrenalina
A primeira síntese química da adrenalina foi feita em 1904, por F. Stolz. Partindo do pirocatecol, ele prepararou a adrenalona, que foi reduzida a uma mistura racêmica de adrenalina.
Biossíntese
Um Hormônio
A adrenalina tem o efeito oposto da insulina: é liberada quando o nível de glicose está baixo. Sua presença na corrente sanguínea aciona mecanismos de mobilização de triacilglicerídeos (gorduras) para produção de açúcar. O aumento da taxa de glicose no sangue permite a fermentação da glicose nos músculos. A adrenalina também inibe a liberação de insulina.
Um Neurotransmissor
A adrenalina atua, também, como um neurotransmissor, e tem efeito sobre o sistema nervoso simpático: coração, pulmões, vasos sanguíneos, órgãos genitais, etc. Este neurotransmissor é liberado em resposta ao stress físico ou mental, e liga-se a um grupo especial de proteínas - os receptores adrenérgicos. Seus principais efeitos são: aumento dos batimentos cardíacos, dilatação dos brônquios e pupilas, vasoconstricção, suor. entre outros.
Quando um animal é ameaçado, as opções são, geralmente, ficar e lutar, ou correr o mais rápido possível. Ambas as respostas irão requerer uma quantidade extra de oxigênio e açúcar no sangue e nos músculos. A liberação de adrenalina, então, é acionada, aumentando a velocidade de batimentos cardíacos, metabolização, e respiração.
A adrenalina está presente em muitas formulações farmacêuticas intr avenosas, principalmente no tratamento da asma, hemorragias internas, entre outros.
Síntese da Adrenalina
A primeira síntese química da adrenalina foi feita em 1904, por F. Stolz. Partindo do pirocatecol, ele prepararou a adrenalona, que foi reduzida a uma mistura racêmica de adrenalina.
Biossíntese da Adrenalina

15 de mar. de 2010

nervoso3

Como Funciona o Sistema Nervoso

Cérebro

O sistema nervoso detecta estímulos externos e internos, tanto físicos quanto químicos, e desencadeia as respostas musculares e glandulares. Assim, é responsável pela integração do organismo com o seu meio ambiente.

Ele é formado, basicamente, por células nervosas, que se interconectam de forma específica e precisa, formando os chamados circuitos neurais. Através desses circuitos, o organismo é capaz de produzir respostas estereotipadas que constituem os comportamentos fixos e invariantes (por exemplo, os reflexos), ou então, produzir comportamentos variáveis em maior ou menor grau.

Todo ser vivo dotado de um sistema nervoso é capaz de modificar o seu comportamento em função de experiências passadas. Essa modificação comportamental é chamada de aprendizado, e ocorre no sistema nervodo através da propriedade chamada plasticidade cerebral.

O Neurônio

A célula nervosa, ou, simplesmente, neurônio, é o principal componente do sistema nervoso. Considerada sua unidade anatomo-fisiológica, estima-se que no cérebro humano existam aproximadamente 15 bilhões destas células, responsável por todas as funções do sistema.

Existem diversos tipos de neurônios, com diferentes funções dependendo da sua localização e estrutura morfológica, mas em geral constituem-se dos mesmos componentes básicos:

Neurônio
Clique para Ampliar

o corpo do neurônio (soma) constituído de núcleo e pericário, que dá suporte metabólico à toda célula

o axônio (fibra nervosa) prolongamento único e grande que aparece no soma. É responsável pela condução do impulso nervoso para o próximo neurônio, podendo ser revestido ou não por mielina (bainha axonial) , célula glial especializada, e

os dendritos que são prolongamentos menores em forma de ramificações (arborizações terminais) que emergem do pericário e do final do axônio, sendo, na maioria das vezes, responsáveis pela comunicação entre os neurônios através das sinapses. Basicamente, cada neurônio, possui uma região receptiva e outra efetora em relação a condução da sinalização.

A Sinapse

É a estrutura dos neurônios através da qual ocorrem os processos de comunicação entre os mesmos, ou seja, onde ocorre a passagem do sinal neural (transmissão sináptica) através de processos eletroquímicos específicos, isso graças a certas características particulares da sua constituição.

Sinapse

Em uma sinapse os neurônios não se tocam, permanecendo um espaço entre eles denominado fenda sináptica, onde um neurônio pré-sináptico liga-se a um outro denominado neurônio pós-sináptico. O sinal nervoso (impulso), que vem através do axônio da célula pré-sináptica chega em sua extremidade e provoca na fenda a liberação de neurotransmissores depositados em bolsas chamadas de vesículas sinápticas. Este elemento químico se liga quimicamente a receptores específicos no neurônio pós-sináptico, dando continuidade à propagação do sinal.

Um neurônio pode receber ou enviar entre 1.000 a 100.000 conexões sinápticas em relação a outros neurônios, dependendo de seu tipo e localização no sistema nervoso. O número e a qualidade das sinapses em um neurônio pode variar, entre outros fatores, pela experiência e aprendizagem, demonstrando a capacidade plástica do SN.

Organização Funcional

Funcionalmente, pode-se afirmar que o SN é composto por neurônios sensoriais, motores e de associação. As informações provenientes dos receptores sensoriais aferem ao Sistema Nervoso Central (SNC), onde são integradas (codificação/comparação/armazenagem/decisão) por neurônios de associação ou interneurônios, e enviam uma resposta que efere a algum orgão efetor (músculo, glândula). Kandel sugere que o "movimento voluntário é controlado por complexo circuito neural no cérebro interconectando os sistemas sensorial e motor. (...) o sistema motivacional". As respostas desencadeadas pelo SNC são tão mais complexas quanto mais exigentes forem os estímulos ambientais (aferentes).

Para tanto o cérebro necessita de uma intrincada rede de circuitos neurais conectando suas principais áreas sensoriais e motoras, ou seja, grandes concentrações de neurônios capazes de armazenar, interpretar e emitir respostas eficientes a qualquer estímulo, tendo também a capacidade de, a todo instante, em decorrência de novas informações, provocar modificações e rearranjos em suas conexões sinápticas, possibilitando novas aprendizagens.

Áreas Associativas do Córtex

Todo o córtex cerebral é organizado em áreas funcionais que assumem tarefas receptivas, integrativas ou motoras no comportamento. São responsáveis por todos os nossos atos conscientes, nossos pensamentos e pela capacidade de respondermos a qualquer estímulo ambiental de forma voluntária.

Existe um verdadeiro mapa cortical com divisões precisas a nível anatomo-funcional, mas que todo ele está praticamente sempre mais ou menos ativado dependendo da atividade que o cérebro desempenha, visto a interdependência e a necessidade de integração constante de suas informações frente aos mais simples comportamentos.

Sistema Nervoso
Clique para Ampliar

Fonte: www.cerebromente.org.br

Sistema Nervoso


Todos os seres vivos têm a capacidade de responder a alterações do meio, através de modificações do seu estado ou de suas atividades.

Estas alterações do meio são chamadas de estímulo, e estes podem ser luminosos, térmicos, elétricos, sonoros, etc...

O Sistema Nervoso tem por função perceber os estímulos, transmiti-los a diversas partes do corpo e efetuar respostas.

Sistema Nervoso Central

Constituído do encéfalo e da medula espinhal.

Função

Codificar os estímulos.

Sistema Nervoso Periférico

Constituído dos nervos cranianos e espinhais.

Função

Captar estímulos e transmitir respostas.

Sistema Nervoso Autônomo

Constituído do Sistema Simpático e Parassimpático.

Função

Coordenar as funções dos órgãos internos.

Neurônio é a unidade celular do Sistema Nervoso.

Possuem formas variadas, mas todos exibem corpo celular, dendritos e axônio.

Os axônios são envolvidos por mielina cuja função é diminuir a perda de energia durante o impulso nervoso.

Condução do Impulso Nervoso

Todas as células do nosso organismo apresentam um potencial elétrico através da sua membrana. Nas condições de repouso , esse potencial é negativo no interior da célula.

Quando um sinal é transmitido ao longo da fibra nervosa, o potencial da membrana passa por uma série de variações, positivo e negativo. Esta variação súbita é chamada de potencial de ação e também de impulso nervoso.

O axônio é capaz de conduzir impulsos nervosos em ambos sentidos ao longo de seu comprimento. Estes impulsos caminham a grandes velocidades 100m/s.

Os neurônios são divididos em 2 grupos. Os aferentes ou sensitivos que captam os estímulos e conduzem para o S.N.Central, e os eferentes ou motores que conduzem a resposta.

Os neurônios se comunicam entre si e com os órgãos efetores (músculos e glândulas) através de sinapses. Não há contato físico, mas há transmissão química.

Fonte: webmap.vilabol.uol.com.br

nervoso2

O sistema nervoso é responsável pelo ajustamento do organismo ao ambiente. Sua função é perceber e identificar as condições ambientais externas, bem como as condições reinantes dentro do próprio corpo e elaborar respostas que adaptem a essas condições.

A unidade básica do sistema nervoso é a célula nervosa, denominada neurônio, que é uma célula extremamente estimulável; é capaz de perceber as mínimas variações que ocorrem em torno de si, reagindo com uma alteração elétrica que percorre sua membrana. Essa alteração elétrica é o impulso nervoso.

As células nervosas estabelecem conexões entre si de tal maneira que um neurônio pode transmitir a outros os estímulos recebidos do ambiente, gerando uma reação em cadeia.

Neurônios: células nervosas

Um neurônio típico apresenta três partes distintas: corpo celular, dentritos e axônio.

No corpo celular, a parte mais volumosa da célula nervosa, se localiza o núcleo e a maioria das estruturas citoplasmáticas.
Os dentritos (do grego dendron, árvore) são prolongamentos finos e geralmente ramificados que conduzem os estímulos captados do ambiente ou de outras células em direção ao corpo celular.

O axônio é um prolongamento fino, geralmente mais longo que os dentritos, cuja função é transmitir para outras células os impulsos nervosos provenientes do corpo celular.

Os corpos celulares dos neurônios estão concentrados no sistema nervoso central e também em pequenas estruturas globosas espalhadas pelo corpo, os gânglios nervosos. Os dentritos e o axônio, genericamente chamados fibras nervosas, estendem-se por todo o corpo, conectando os corpos celulares dos neurônios entre si e às células sensoriais, musculares e glandulares.

Células Glia

Além dos neurônios, o sistema nervoso apresenta-se constituído pelas células glia, ou células gliais, cuja função é dar sustentação aos neurônios e auxiliar o seu funcionamento. As células da glia constituem cerca de metade do volume do nosso encéfalo. Há diversos tipos de células gliais. Os astrócitos, por exemplo, dispõem-se ao longo dos capilares sanguíneos do encéfalo, controlando a passagem de substâncias do sangue para as células do sistema nervoso. Os oligodendrócitos e as células de Schwann enrolam-se sobre os axônios de certos neurônios, formando envoltórios isolantes.

Impulso Nervoso

A despolarização e a repolarização de um neurônio ocorrem devido as modificações na permeabilidade da membrana plasmática. Em um primeiro instante, abrem-se "portas de passagem" de Na+, permitindo a entrada de grande quantidade desses íons na célula. Com isso, aumenta a quantidade relativa de carga positiva na região interna na membrana, provocando sua despolarização. Em seguida abrem-se as "portas de passagem" de K+, permitindo a saída de grande quantidade desses íons. Com isso, o interior da membrana volta a ficar com excesso de cargas negativas (repolarização). A despolarização em uma região da membrana dura apenas cerca de 1,5 milésimo de segundo (ms).

O estímulo provoca, assim, uma onda de despolarizações e repolarizações que se propaga ao longo da membrana plasmática do neurônio. Essa onda de propagação é o impulso nervoso, que se propaga em um único sentido na fibra nervosa. Dentritos sempre conduzem o impulso em direção ao corpo celular, por isso diz que o impulso nervoso no dentrito é celulípeto. O axônio por sua vez, conduz o impulso em direção às suas extremidades, isto é, para longe do corpo celular; por isso diz-se que o impulso nervoso no axônio é celulífugo.

A velocidade de propagação do impulso nervoso na membrana de um neurônio varia entre 10cm/s e 1m/s. A propagação rápida dos impulsos nervosos é garantida pela presença da bainha de mielina que recobre as fibras nervosas. A bainha de mielina é constituída por camadas concêntricas de membranas plasmáticas de células da glia, principalmente células de Schwann. Entre as células gliais que envolvem o axônio existem pequenos espaços, os nódulos de Ranvier, onde a membrana do neurônio fica exposta.

Nas fibras nervosas mielinizadas, o impulso nervoso, em vez de se propagar continuamente pela membrana do neurônio, pula diretamente de um nódulo de Ranvier para o outro. Nesses neurônios mielinizados, a velocidade de propagação do impulso pode atingir velocidades da ordem de 200m/s (ou 720km/h ).

Sistema Nervoso
Clique para Ampliar

Sinapses: transmissão do impulso nervoso entre células

Um impulso é transmitido de uma célula a outra através das sinapses (do grego synapsis, ação de juntar). A sinapse é uma região de contato muito próximo entre a extremidade do axônio de um neurônio e a superfície de outras células. Estas células podem ser tanto outros neurônios como células sensoriais, musculares ou glandulares.

As terminações de um axônio podem estabelecer muitas sinapses simultâneas.

Na maioria das sinapses nervosas, as membranas das células que fazem sinapses estão muito próximas, mas não se tocam. Há um pequeno espaço entre as membranas celulares (o espaço sináptico ou fenda sináptica).

Quando os impulsos nervosos atingem as extremidades do axônio da célula pré-sináptica, ocorre liberação, nos espaços sinápticos, de substâncias químicas denominadas neurotransmissores ou mediadores químicos, que tem a capacidade de se combinar com receptores presentes na membrana das célula pós-sináptica, desencadeando o impulso nervoso. Esse tipo de sinapse, por envolver a participação de mediadores químicos, é chamado sinapse química.

Os cientistas já identificaram mais de dez substâncias que atuam como neurotransmissores, como a acetilcolina, a adrenalina (ou epinefrina), a noradrenalina (ou norepinefrina), a dopamina e a serotonina.

Sistema Nervoso
Clique para Ampliar

Sinapses Neuromusculares

A ligação entre as terminações axônicas e as células musculares é chamada sinapse neuromuscular e nela ocorre liberação da substância neurotransmissora acetilcolina que estimula a contração muscular.

Sinapses Elétricas

Em alguns tipos de neurônios, o potencial de ação se propaga diretamente do neurônio pré-sináptico para o pós-sináptico, sem intermediação de neurotransmissores. As sinapses elétricas ocorrem no sistema nervoso central, atuando na sincronização de certos movimentos rápidos.

Para que todas as funções sejam desempenhadas adequadas e coordenadamente , o nosso organismo dispõe de um sistema que integra todos os órgãos do corpo .É o sistema neuroendócrino.

Para que possamos responder rapidamente a estímulos como caminhar ,ler, pegar algo etc. ou

Seja , situações que dependem da nossa vontade , utilizamos o sistema nervoso voluntário .Mas em outras situações não dependentes da nossa vontade , como batimentos cardíacos , digestão etc. aí utilizamos o sistema nervoso involuntário.

Sistema nervoso somático: *central- responsável pelo controle de todas as atividades nervosas .(é formado pelo encéfalo( cérebro ,cerebelo e bulbo) e pela a medula espinhal.

Encéfalo se aloja na caixa craniana , enquanto Que a medula se localiza no interior da coluna vertebral .Além disso é envolvido por três membranas; as meninges (dumáter, aracnóide e a pia-máter)tem sua função protetora (impede o atrito e o deslocamento desses órgãos ,pois possuem vasos sangüíneos que irrigam o sistema nervoso.

Também na meninges encontramos um líquido cristalino chamado de líquido cefalorraquidiano,que protege os órgãos do snc contra choques mecânicos .

Meningite é causada por vírus e bactérias que atacam as meninges assim inflamando-as.

Cérebro: É o maior órgão do encéfalo , pesa, num adulto , cerca de 1.400gramas .Divide-se em dois hemisférios cerebrais e apresenta em sua superfície o córtex cerebral , responsável pela percepção dos sentidos , armazenamento de informações etc. o córtex é a sede do controle dos atos conscientes e inconscientes e também da inteligência.

Dicéfalo- é onde tem o controle do sono ,da fome etc.

Cerebelo- chamada de arvore da vida ,tem movimentos musculares precisos e o equilíbrio do corpo .

Bulbo- É responsável de controlar a pressão sangüínea e o ritmo respiratório .

Medula espinhal- conduzem estímulos ao encéfalo e as respostas do encéfalo , portanto são nervos mistos .

Em certas situações , a medula funciona como centro nervoso , isto é , processa ela mesma, a resposta . É o que absorvamos , por exemplo , nos reflexos . Ao pisarmos sobre um prego , imediatamente recolhemos o pé . o estímulo foi percebido pelos receptores dos pés , transmitido até a medula que se encarregou de processar a resposta .Ao recolhermos o pé realizamos um ato reflexo . o trajeto percorrido pelo estímulo denomina-se arco- reflexo .

Função do Sistema Nervoso

O sistema nervoso é responsável pelo ajustamento do organismo ao ambiente. Sua função é perceber e identificar as condições ambientais externas, bem como as condições reinantes dentro do próprio corpo e elaborar respostas que adaptem a essas condições.

A unidade básica do sistema nervoso é a célula nervosa, denominada neurônio, que é uma célula extremamente estimulável; é capaz de perceber as mínimas variações que ocorrem em torno de si, reagindo com uma alteração elétrica que percorre sua membrana. Essa alteração elétrica é o impulso nervoso.

As células nervosas estabelecem conexões entre si de tal maneira que um neurônio pode transmitir a outros os estímulos recebidos do ambiente, gerando uma reação em cadeia.

Neurônios: células nervosas

Um neurônio típico apresenta três partes distintas: corpo celular, dentritos e axônio.

No corpo celular, a parte mais volumosa da célula nervosa, se localiza o núcleo e a maioria das estruturas citoplasmáticas.

Os dentritos (do grego dendron, árvore) são prolongamentos finos e geralmente ramificados que conduzem os estímulos captados do ambiente ou de outras células em direção ao corpo celular.

O axônio é um prolongamento fino, geralmente mais longo que os dentritos, cuja função é transmitir para outras células os impulsos nervosos provenientes do corpo celular.

Os corpos celulares dos neurônios estão concentrados no sistema nervoso central e também em pequenas estruturas globosas espalhadas pelo corpo, os gânglios nervosos. Os dentritos e o axônio, genericamente chamados fibras nervosas, estendem-se por todo o corpo, conectando os corpos celulares dos neurônios entre si e às células sensoriais, musculares e glandulares.

Células Glia

Além dos neurônios, o sistema nervoso apresenta-se constituído pelas células glia, ou células gliais, cuja função é dar sustentação aos neurônios e auxiliar o seu funcionamento. As células da glia constituem cerca de metade do volume do nosso encéfalo. Há diversos tipos de células gliais. Os astrócitos, por exemplo, dispõem-se ao longo dos capilares sanguíneos do encéfalo, controlando a passagem de substâncias do sangue para as células do sistema nervoso. Os oligodendrócitos e as células de Schwann enrolam-se sobre os axônios de certos neurônios, formando envoltórios isolantes.

Impulso Nervoso

A despolarização e a repolarização de um neurônio ocorrem devido as modificações na permeabilidade da membrana plasmática. Em um primeiro instante, abrem-se "portas de passagem" de Na+, permitindo a entrada de grande quantidade desses íons na célula. Com isso, aumenta a quantidade relativa de carga positiva na região interna na membrana, provocando sua despolarização. Em seguida abrem-se as "portas de passagem" de K+, permitindo a saída de grande quantidade desses íons. Com isso, o interior da membrana volta a ficar com excesso de cargas negativas (repolarização). A despolarização em uma região da membrana dura apenas cerca de 1,5 milésimo de segundo (ms).

O estímulo provoca, assim, uma onda de despolarizações e repolarizações que se propaga ao longo da membrana plasmática do neurônio. Essa onda de propagação é o impulso nervoso, que se propaga em um único sentido na fibra nervosa. Dentritos sempre conduzem o impulso em direção ao corpo celular, por isso diz que o impulso nervoso no dentrito é celulípeto. O axônio por sua vez, conduz o impulso em direção às suas extremidades, isto é, para longe do corpo celular; por isso diz-se que o impulso nervoso no axônio é celulífugo.

A velocidade de propagação do impulso nervoso na membrana de um neurônio varia entre 10cm/s e 1m/s. A propagação rápida dos impulsos nervosos é garantida pela presença da bainha de mielina que recobre as fibras nervosas. A bainha de mielina é constituída por camadas concêntricas de membranas plasmáticas de células da glia, principalmente células de Schwann. Entre as células gliais que envolvem o axônio existem pequenos espaços, os nódulos de Ranvier, onde a membrana do neurônio fica exposta.

Nas fibras nervosas mielinizadas, o impulso nervoso, em vez de se propagar continuamente pela membrana do neurônio, pula diretamente de um nódulo de Ranvier para o outro. Nesses neurônios mielinizados, a velocidade de propagação do impulso pode atingir velocidades da ordem de 200m/s (ou 720km/h ).

Sistema Nervoso
Divisão Partes Funções gerais
Sistema nervoso central (SNC) Encéfalo
Medula espinal
Processamento e integração de informações
Sistema nervoso periférico (SNP) Nervos
Gânglios
Condução de informações entre órgãos receptores de estímulos, o SNC e órgãos efetuadores (músculos, glândulas...)

Sistema Nervoso
Sinapses: transmissão do impulso nervoso entre células
Clique para Ampliar

Um impulso é transmitido de uma célula a outra através das sinapses (do grego synapsis, ação de juntar). A sinapse é uma região de contato muito próximo entre a extremidade do axônio de um neurônio e a superfície de outras células. Estas células podem ser tanto outros neurônios como células sensoriais, musculares ou glandulares.

As terminações de um axônio podem estabelecer muitas sinapses simultâneas.

Na maioria das sinapses nervosas, as membranas das células que fazem sinapses estão muito próximas, mas não se tocam. Há um pequeno espaço entre as membranas celulares (o espaço sináptico ou fenda sináptica).

Quando os impulsos nervosos atingem as extremidades do axônio da célula pré-sináptica, ocorre liberação, nos espaços sinápticos, de substâncias químicas denominadas neurotransmissores ou mediadores químicos, que tem a capacidade de se combinar com receptores presentes na membrana das célula pós-sináptica, desencadeando o impulso nervoso. Esse tipo de sinapse, por envolver a participação de mediadores químicos, é chamado sinapse química.

Os cientistas já identificaram mais de dez substâncias que atuam como neurotransmissores, como a acetilcolina, a adrenalina (ou epinefrina), a noradrenalina (ou norepinefrina), a dopamina e a serotonina.

Impulso Nervoso

A ligação entre as terminações axônicas e as células musculares é chamada sinapse neuromuscular e nela ocorre liberação da substância neurotransmissora acetilcolina que estimula a contração muscular.

Sinapses Elétricas

Sinapses Elétricas
Clique para Ampliar

Em alguns tipos de neurônios, o potencial de ação se propaga diretamente do neurônio pré-sináptico para o pós-sináptico, sem intermediação de neurotransmissores. As sinapses elétricas ocorrem no sistema nervoso central, atuando na sincronização de certos movimentos rápidos.

Fonte: www.webciencia.com

नेर्वोसो 1

Sistema Nervoso

Sistema Nervoso Cefalorraquidiano

Esse sistema, também chamado cérebro espinhal, é formado por células estreladas que recebem o nome de neurônios.

Os neurônios são formados pelo corpo celular, que compreende a estrela do neurônio e tem cor cinzenta.

Do corpo celular saem numerosas ramificações denominadas dentritos e um grande prolongamento de cor branca denominado axônio.

Os axônios constituem os nervos e chegam, em certos casos, a medir cerca de um metro de comprimento. Cada axônio é envolvido por uma membrana gordurosa e isolante denominada bainha de mielina.

O sistema cefalorraquidiano divide-se em duas partes: sistema nervoso central e sistema nervoso periférico.

Sistema Nervoso Central

É formado pelo encéfalo e pela medula espinhal. Os encéfalo localiza-se dentro da caixa craniana e é constituído por três órgãos: cérebro, cerebelo e bulbo. A medula espinhal situa-se dentro da coluna vertebral, ou seja, no canal medular.

Todos esses órgãos são formados por uma substância cinzenta e uma substância branca. A substância cinzenta produz ou recebe os estímulos nervosos, enquanto a substância branca é responsável pela transmissão dos estímulos nervosos do sistema nervoso para os órgãos e vice-versa.

Cérebro

É o órgão mais volumoso e mais importante do sistema nervoso. Divide-se em duas partes denominadas hemisférios cerebrais. Os hemisférios estão ligados um ao outro pelo corpo caloso.

A superfície do cérebro apresenta sulcos chamados cissuras. Os sulcos dividem a superfície do cérebro em regiões que se chamam circunvoluções cerebrais. A maior das cissuras é a inter-hemisférica, que divide o cérebro nos dois hemisférios cerebrais.

Cada circunvolução cerebral é responsável pelo controle de determinadas funções. As circunvoluções que se localizam na frente, junto ao osso frontal, controlam a fala. As que se situam atrás, junto ao osso occipital, controlam as sensações visuais. Junto aos ossos parietais ficam as circunvoluções que controlam os movimentos do corpo. As sensações auditivas são controladas pelas circunvoluções localizadas junto aos ossos temporais.

A substância cinzenta do cérebro localiza-se na parte externa; a substância branca situa-se na parte interna.

O cérebro é o órgão mais importante do sistema nervoso, pois é ele que controla os movimentos, recebe e interpreta os estímulos sensitivos, coordena os atos da inteligência, da memória, do raciocínio e da imaginação.

Cerebelo

Situa-se embaixo e na parte posterior do cérebro. divide-se em duas massas denominadas lobos cerebelares. Os lobos são ligados no centro pelo verme cerebral.

Da mesma forma que o cérebro, o cerebelo apresenta substância cinzenta na parte exterior e branca no interior.

A função do cerebelo é coordenar os movimentos do corpo para manter seu equilíbrio. Regula também o tônus muscular, que é o estado de semicontração que os músculos se encontram, para entrarem imediatamente em movimento, sempre que for necessário.

O álcool afeta o cerebelo e é por essa razão que a pessoa bêbada não consegue caminhar em linha reta.

Bulbo

Localiza-se embaixo do cérebro e na frente do cerebelo. Possui a forma de um cone invertido. Ao contrário do cérebro e do cerebelo, no bulbo a substância branca situa-se na parte externa e a cinzenta, na interna.

A função do bulbo é conduzir os impulsos nervosos do cérebro para a medula espinhal e vice-versa. Também produz os estímulos nervosos que controlam a circulação, a respiração, a digestão e a excreção.

A região do bulbo que controla os movimentos respiratórios e os cardíacos chama-se nó vital. Recebe esse nome porque se uma pessoa recebe uma forte pancada nesse local poderá morrer instantaneamente, devido à paralisação dos movimentos respiratórios e cardíacos.

Medula Espinhal

É um tubo nervoso, com aproximadamente 45 centímetros de comprimento e 1 centímetro de diâmetro, situado dentro da coluna vertebral. Na parte superior, a medula está ligada ao bulbo, como se fosso uma continuação desse órgão.

A medula espinhal possui também a substância branca na parte externa e a cinzenta, na interna. A substância cinzenta se dispõe na forma de um H, cujos ramos dão origem às raízes nervosas que saem da medula.

A medula espinhal tem duas funções:

Conduzir os impulsos nervosos do corpo para o cérebro. Essa função é realizada pela substância branca.

Produzir os impulsos nervosos. Essa função é realizada pela substância cinzenta. A medula é capaz de coordenar os atos involuntários ou inconscientes, como retirar o deio rapidamente de uma panela de água fervendo.

Sistema Nervoso Periférico

É formado por um conjunto de nervos que podem ser classificados em dois tipos: raquidianos e cranianos.

Nervos Raquidianos

São 31 pares de nervos que partem da medula espinhal e se ramificam por todo o corpo. Os nervos raquidianos são formados pelas raízes nervosas que se iniciam nos ramos que formam o H da substância cinzenta da medula espinhal.

Quanto à transmissão dos estímulos nervosos, os nervos podem ser de três tipos:

1. Sensitivos

Levam os estímulos nervosos do corpo para o cérebro.

2. Motores

Levam os estímulos nervosos do cérebro para o corpo.

3. Mistos

São sensitivos e motores, simultaneamente.

Na realidade, os nervos raquidianos são mistos, pois são formados por duas raízes nervosas: a raiz anterior, que é motora, e a raiz posterior, que é sensitiva.

De acordo com as regiões da coluna vertebral, os 31 pares de nervos raquidianos distribuem-se da seguinte forma:

Oito pares de nervos cervicais

Doze pares de nervos dorsais

Cinco pares de nervos lombares

Seis pares de nervos sagrados ou sacrais

Nervos Cranianos

Os nervos cranianos são constituídos por doze pares de nervos que saem do encéfalo e se distribuem pelo corpo. Podem ser sensitivos, motores ou mistos.

A seguir, apresento a relação desses doze pares de nervos e suas respectivas funções.

Óptico

Conduz os estímulos de luz do globo ocular para o cérebro.

Motor ocular comum

Estimula a contração dos músculos que movimentam os olhos para baixo e para cima.

Motor ocular externo

Estimula certos músculos dos olhos, movimentando-os lateralmente.

Auditivo

Conduz para o cérebro os estímulos sonoros e os impulsos responsáveis pelo equilíbrio.

Olfativo

Conduz os estímulos do olfato para o cérebro.

Trigêmeo

Leva ao cérebro a sensibilidade da parte superior da face e dos dentes. Estimula também os músculos que movimentam o maxilar inferior.

Glossofaríngio

Conduz os estímulos do paladar para o cérebro e movimenta os músculos da faringe.

Hipoglosso

Estimula os músculos da língua.

Patético

Estimula certos músculos dos olhos, movimentando-os para os lados e para baixo.

Facial

Estimula os músculos da face, as glândulas salivares e as lacrimais.

Pneumogástrico ou Vago

Estimula o coração, os pulmões, o estômago e o intestino, entre outros órgãos, dando movimento e sensibilidade às vísceras.

Espinhal

Estimula os músculos do pescoço, permitindo a fonação e os movimentos da cabeça e da faringe.

Sistema Nervoso Autônomo

Como o próprio nome diz, o sistema nervoso autônomo é aquele que funciona independentemente de nossa vontade. É ele que controla as funções da vida vegetativa, como a digestão e a respiração.

O sistema nervoso autônomo compõe-se de três partes:

1. Dois ramos nervosos situados ao lado da coluna vertebral. Esses ramos são formados por pequenas dilatações denominadas gânglios, num total de 23 pares.

2. Um conjunto de nervos que liga os gânglios nervosos aos diversos órgãos de nutrição, como o estômago, o coração e os pulmões.

3. Um conjunto de nervos comunicantes que ligam os gânglios aos nervos raquidianos, fazendo com que os sistema autônomo não seja totalmente independente do sistema nervoso cefalorraquidiano.

O sistema nervoso autônomo divide-se em sistema nervoso simpático e sistema nervoso parasimpático. De modo geral, esses dois sistemas têm funções contrárias.

Um corrige os excessos do outro. Por exemplo, se o sistema simpático acelera demasiadamente as batidas do coração, o sistema parassimpático entra em ação, diminuindo o ritmo cardíaco. Se o sistema simpático acelera o trabalho do estômago e dos intestinos, o parassimpático entra em ação para diminuir as contrações desses órgãos.

Fonte: www.escolavesper.com.br

Excretor

Aparelho Urinário

Sistema Urinário

Como o sistema urinário trabalha?

Seu corpo capta nutrientes dos alimentos e os utiliza para manter todas as funções corpóreas incluindo energia e auto-reparo. Depois de seu organismo ter adquirido o que precisa dos alimentos, produtos desprezados são deixados para trás no sangue e no intestino. O sistema urinário atua com os pulmões, pele, e intestino - todos excretam impurezas e produtos do metabolismo - para manter balanceadas as substâncias e a água de seu corpo. Adultos eliminam cerca de um litro a um litro e meio de urina por dia. A quantidade depende de diversos fatores, especialmente da quantidade de fluidos e alimentos que a pessoa consome e de quanto líquido é perdido através de suor e da respiração. Certos tipos de medicamentos também podem interferir na quantidade de urina é eliminada.

O sistema urinário remove um tipo de dejeto chamado uréia. Ele aparece quando carne, fermento, e algumas verduras, são decompostas no seu corpo. A uréia é levada na corrente sanguínea até os rins.

Os rins são órgãos que tem formato de feijão e o tamanho aproximado do seu punho. Eles estão próximos do meio das costas, logo abaixo das costelas. Os rins removem a uréia do sangue através de pequenas unidades filtradoras chamadas néfrons. Cada néfron é constituído por uma bola formada de pequenos capilares sanguíneos, chamada glomérulo, e um pequeno tubo chamado túbulo renal. Uréia, junto com água e outras substâncias desprezáveis, formam a urina conforme passam pelos nefrons e seguem pelo túbulo renal do rim.

Rim e Via Excretora

Sistema Urinário

Dos rins, a urina viaja através de dois finos tubos chamados ureteres até a bexiga. Os ureteres medem aproximadamente de 8 a 10 polegadas de comprimento. Músculos nas paredes dos ureteres constantemente contraem e relaxam para forçar a urina dos rins para baixo. Se é permitido que a urina fique parada, ou volte para cima, uma infecção renal pode se desenvolver. Pequenas quantidades de urina são despejadas na bexiga pelos ureteres a cada 10 a 15 segundos, aproximadamente.

A bexiga é um órgão muscular oco com formato de um balão. Ela se situa na sua pelve (parte inferior do abdome) e é mantida no lugar por ligamentos inseridos em outros órgãos e nos ossos da pelve. A bexiga armazena urina até que você esteja pronto para ir ao banheiro para esvaziá-la. Ela incha obtendo uma forma arredondada quando está cheia e fica diminuída quando vazia. Se o sistema urinário está íntegro, a bexiga pode comportar até 500ml (2 copos) de urina confortavelmente por 2 a 5 horas.

Bexiga

Sistema Urinário

Músculos circulares chamados esfíncteres ajudam a evitar que a urina vaze. Os músculos esfincterianos se fecham como uma fita de borracha ao redor da abertura da bexiga na uretra, o tubo que permite que a urina passe para fora do corpo.

Nervos da bexiga informam quando é hora de urinar (esvaziar a bexiga). Ao passo que a bexiga vai ficando repleta de urina, pode-se perceber uma necessidade de urinar. A sensação de urinar torna-se mais forte à medida que a urina continua a encher e alcança seu limite. Neste momento, nervos da bexiga enviam ao cérebro uma mensagem de que a bexiga está cheia, e sua urgência para esvaziar a bexiga se intensifica.

Quando você urina, o cérebro sinaliza aos músculos da bexiga para se contraírem, espremendo a urina para fora da bexiga. Ao mesmo tempo, o cérebro sinaliza aos músculos do esfíncter para relaxarem. Quando estes músculos relaxam a urina sai da bexiga através da uretra. Quando todos os sinais ocorrem na ordem correta, acontece o ato de urinar normal.

Fonte: www.sbv.org.br

Total de visualizações de página

 
Desenvolvido por Othon Fagundes