Tecnologia do Blogger.

19 de mar. de 2010

TEORIA CELULAR


Um dos princípios fundamentais da biologia é que todos os seres vivos são formados por células: apenas uma nos organismos unicelulares, muitíssimas nos pluricelulares. Este conceito, que hoje nos parece simples, tem uma origem muito remota, sendo preciso recuar até ao século XVII, quando os primeiros instrumentos ópticos, como o microscópio, permitiram ao homem observar objectos muito pequenos de cuja existência nem se suspeitava.

Em 1665, o cientista inglês Robert Hooke (1635-1703), observando uma secção de cortiça ao microscópio, notara pequeníssimas cavidades semelhantes às de uma colmeia, a que chamou células. Seguiram-se muitas observações e pesquisas, mas só no século XIX se reconheceu a célula como a unidade funcional de todos os organismos vivos.

A teoria celular, formulada, por volta de meados do século XIX, por dois cientistas alemães, Mathias Schleiden (1804-1881) eTheodor Schwann (1810-1882), defendia que todos os seres vivos são constituídos por células (primeiro postulado), que a célula é uma espécie de "fábrica química" onde se realizam todos os processos necessários à vida do organismo (segundo postulado) e que cada célula deriva de uma outra célula (terceiro postulado).

O grande sucesso da teoria celular verificou-se na patologia e na fisiologia, com o estudioso alemão Rudolf Virchow (1821-1902), de formação médica, a deslocar o centro da doença dos tecidos para as células. A célula doente foi por ele considerada não como uma estrutura qualitativamente diferente, mas apenas como uma modificação da célula sã. Esta afirmação abriu caminho a pesquisas sobre a identificação das condições que alteram o estado normal de uma célula e a resposta da própria célula àquelas condições patológicas.



Fonte: www.cientic.com

MORFOLOGIA
















Célula Eucariótica
A célula eucariótica possui três componentes principais:

O núcleo, que constitui um compartimento limitado por um envoltório nuclear. O citoplasma, outro compartimento envolvido por membrana plasmática, e a membrana plasmática e suas diferenciações.

Esses três componentes possuem vários subcomponentes ou subcompartimentos.

Existe grande variabilidade na forma das células eucarióticas. Geralmente o que determina a forma de uma célula é sua função específica.

Outros determinantes da forma de uma célula podem ser o citoesqueleto presente em seu citoplasma, a ação mecânica exercida por células adjacentes e a rigidez da membrana plasmática.

As células eucariontes são usualmente maiores e estruturalmente complexas. As organelas presentes no citoplasma possuem papéis específicos definidos por reações químicas. A presença ou ausência de determinadas organelas definirá se a célula é vegetal ou animal.

Membrana Plasmática Consiste de uma camada bilipídica que delimita toda a célula. Desempenha diversas funções importantes.

Núcleo Contém o material genético, e desempenha função preponderante na reprodução celular;

Cloroplasto Organelas presente em células vegetais. Tem papel fundamental na fotossíntese.

Mitocôndrias É uma organela limitada por uma dupla camada, sendo a interna dobrada formando cristas. Possui DNA próprio e ribossomos. São responsáveis pela respiração celular.

Peroxissomos São circundados por uma membrana única, podendo ter corpos protéicos na forma cristalina. Contêm uma variedade de enzimas para diversos processos, como a fotorespiração.

Ribossomos São encontrados livres no citossol e unidos ao retículo endoplasmático e à superfície externa do núcleo. Ë responsável pela síntese protéica.

Retículo endoplasmático É uma rede de canais membranosos que podem ser de dois tipos: RE rugoso (associado a ribossomos) está envolvido com a síntese protéica e membranas, e o RE liso (não contém ribossomos) é envolvido na síntese de lipídeos.

Aparelho de Golgi Consiste de uma pilha de sacos membranosos e achatados, em forma de disco, também conhecidos como cisternas.Processa e acondiciona substâncias para secreção e uso da própria célula, liberando vesículas através de suas paredes laterais (que são mais desenvolvidas).

Lisossomos São pequenas vesículas membranares produzidas pelo Aparelho de Golgi, que participam da nutrição celular e de mecanismos de defesas da célula.

Citoesqueleto É uma complexa rede de filamentos protéicos que podem ser microtúbulos ou filamentos de actina. Estão envolvidos na divisão, crescimento e diferenciação celular.

Microtúbulos São estruturas cilíndricas, de comprimento variado, constituído de subunidades da proteína tubulina. Estão envolvidos em vários processos, como por exemplo, no movimento de cílios e flagelos e na orientação do movimento das vesículas do Golgi e dos cromossomos (na divisão celular).



Fonte: http://cgi.ufmt.br/











Célula Procariótica
As células procariontes se caracterizam pela pobreza de membrana plasmática. Ao contrário dos eucariontes, não possuem uma membrana envolvendo os cromossomos, separando-os do citoplasma. Os seres vivos que são constituídos por estas células são denominados procariotas, compreendendo principalmente as bactérias, e algumas algas (cianofíceas e algas azuis) que também são consideradas bactérias.

Por sua simplicidade estrutural e rapidez na multiplicação, a célula Escherichia coli é a célula procarionte mais bem estudada. Ela tem forma de bastão, possuindo uma membrana plasmática semelhante à de células eucariontes. Por fora dessa membrana existe uma parede rígida, com 20nm de espessura, constituída por um complexo de proteínas e glicosaminoglicanas. Esta parede tem como função proteger a bactéria das ações mecânicas.


Esquema de uma célula procarionte com suas principais estruturas (E.coli)


Foto da bactéria Escherichia coli

No citoplasma da E.coli existem ribossomos ligados a moléculas de RNAm, constituindo polirribossomos.

O nucleóide é uma estrutura que possui dois ou mais cromossomos idênticos circulares, presos a diferentes pontos da membrana plasmática.

As células procariontes não se dividem por mitose e seus filamentos de DNA não sofrem o processo de condensação que leva à formação de cromossomos visíveis ao microscópio óptico, durante a divisão celular.

Em alguns casos, a membrana plasmática se invagina e se enrola formando estruturas denominadas mesossomos.

As células procariontes que realizam fotossíntese, possui em seu citoplasma, algumas membranas, paralelas entre si, e associadas a clorofila ou a outros pigmentos responsáveis pela captação de energia luminosa.

Diferente das células eucariontes, os procariontes não possuem um citoesqueleto (responsável pelo movimento e forma das células). A forma simples das células procariontes, que em geral é esférica ou em bastonete , é mantida pela parede extracelular, sintetizada no citoplasma e agregada à superfície externa da membrana celular.


Célula procarionte esférica


Célula procarionte em forma de bastonete

A principal diferença entre células procariontes e eucariontes, é que esta última possui um extenso sistema de membrana cria, no citoplasma, microrregiões que contêm moléculas diferentes e executam funções especializadas.

Fonte: http://cgi.ufmt.br

CÉLULA E GENÉTICA

A origem da vida na Terra a reprodução dos seres vivos e a teoria da evolução de Darwin foram convertidas à sua base física e química no século 20 – convertidas ao ponto de conseguirmos observar os anteriormente insondáveis fatores da hereditariedade, mola mestra e mecanismo da evolução. Pela primeira vez, pudemos compreender o inter-relacionamento destes três elementos da vida : origem, reprodução e evolução.

A descoberta da célula, de seu núcleo e de seus processos de divisão

Em 1665, o cientista Robert Hooke cunhou o termo “célula” antes que qualquer célula viva houvesse realmente sido vista. Só na década 1670, Van Leeuwenhoek criou lentes potentes. Em 1673, ele abriu um mundo novo podendo observar células(adotando termo de Hooke).

A teoria celular só começou desenvolver-se em 1831. nesse ano, o botânico Robert Brown observou o ponto de controle da célula, denominando-o “núcleo”, e identificou essa estrutura como o elemento comum de todas as células vegetais. Logo os núcleos foram descobertos em células animais, e o fluxo do “protoplasma” foi observado em c´lulas vivas em 1835.

Biólogos descobrem os órgãos da célula
Cientistas começaram a identificar outras partes do mecanismo interno da célula. Na verdade, as células contêm um conjunto de órgãos distintos denominados organelas.

Núcleo : Sede da cromatina. Comando celular.

Ribossomos : Síntese de proteínas.

Reticulo endoplasmático : Armazenamento, transporte e síntese de alguns lipídios.

Aparelho de Golgi : Armazenamento, empacotamento e secreção de substancias destinadas à exportação.

Lisossomos : Digestão intracelular de material endógeno ou exógeno.

Mitocôndrias : Respiração celular

Membrana : Regula as trocas entre a célula e o meio.

Cada célula contem apenas um núcleo, mas varias unidades das demais organelas, alem das organelas mencionadas acima, as células vegetais contem cloroplasto, que são muito semelhantes às mitocôndrias, porem criam energia por meio da fotossíntese

Biólogos determinas as fases da divisão celular
Em 1879, Walther Flemming conseguiu identificar um material filiforme no núcleo das células. Observando esse material durante a divisão celular, ele mostrou que os filamentos encurtavam e se dividam longitudinalmente em metades, cada uma delas movendo-se para lados opostos de duas novas células idênticas. Ele deu a esse processo de divisão celular o nome de “mitose”.

A vida de uma célula consiste nos cinco estágios a seguir :

Interfase : A célula está representada em interfase, antes da duplicação dos cromossomos e dos centríolos. A duplicação dos cromossomos ocorrerá no final da interfase.

Prófase : Condensação dos cromossomos já duplicados. Migração dos centríolos para pólos opostos. Aparecimento das fibras do fuso. Desaparecimento dos núcleos. Desaparecimentos da carioteca.

Metáfase : Centríolos em pólos opostos na célula. Cromossomos condensados, situados na região mediana da célula, presos pelo centrômero a fibras de ambos os pólos.

Anáfase : Afastamento das cromátides irmãs e migração para pólos opostos.

Telófase : Descondensação dos cromossomos. Reaparecimento dos nucléolos. Reconstituição das cariotecas. Desaparecimento das fibras do fuso. Citocinese.

As bactérias tornam-se o primeiro ancestral comum de todas as formas de vida
Nos 3 bilhões de anos seguintes, os únicos seres vivos na Terra foram organismos unicelulare. Assim como o primeiro RNA e os organismos multicelulares que evoluíram depois, esses animais unicelulares passaram por seus próprios processos evolutivos distintos. Essas primeiras células evoluíram para espécies bacterianas das quais evoluíram todos os outros seres vivos, inclusive a vida vegetal e animal. Bactérias são criaturas unicelulares e possuem todas as organelas, exceto um núcleo bem definido. A maioria das espécies bactérias é inofensiva a outras formas de vida, inclusive aos humanos, ou é vital para a existência desses seres. Certos tipos de bactérias são conhecidos por causarem doenças. Essas bactérias patogênicas podem infectar praticamente todas as regiões do corpo humano. Eles estão simplesmente vivendo no meio especifico no qual evoluíram e se adaptaram, reproduzindo-se e se dividindo como qualquer outro organismo.

A ascensão mental e física dos humanos a partir de uma única célula é espantosa
O poder superior de do cérebro humano é um resultado da seleção natural, assim como quaisquer outras características que proporcionam uma vantagem para a sobrevivência. Como vimos antes os nossos ancestrais mais remotos que vagueavam pelas planícies africanas já sobreviviam mais pela astúcia do que pela força bruta ou pela velocidade. Somos igualmente complexos no físico. Entre os 60 trilhões de células que compõem o corpo de cada um de nós, encontramos não apenas as células que estão organizadas em tecidos, mas também milhões de células isoladas quais dependemos para sobreviver:

Macrófagos alveolares consomem partículas inaladas de poeira e as transportam para fora dos pulmões, traquéia acima e, finalmente, para fora do corpo.

Outros tipos de macrófagos migrantes percorrem nossos vasos sangüíneos, recolhem células sangüíneas mortas e engolem organismos potencialmente infecciosos.

Outros macrófagos e células sangüíneas combatem células que se tornaram cancerígenas.

As células sangüíneas brancas mais conhecidas, que enxergamos em forma de pus, ingerem bactérias, células de tecido morto, protozoários e outros corpos estranhos.

Embora apresentem muitas características semelhantes às de bactérias e ácaros e às de amebas e protozoários unicelulares de vida livre, elas são produto dos genes humanos. Em outras palavras, nosso próprio DNA e programado para criar esses “animálculos animados”.

A questão sobre inevitabilidade ou acaso pode nunca vir a ser respondidas conclusivamente. Porém, aproximando-nos do final do século no qual alcançamos a compreensão da célula e de seu funcionamento, vemos que os cientistas conseguiram determinar os processos físicos que foram responsáveis pela auto-replicacão e pelo crescimento e que impeliram os organismos unicelulares originais a evoluir para vegetais, animais e humanos complexos.

Mendel formula os princípios básicos da genética
George Mendel teve um papel central na erradicação das velhas crenças sobre as características hereditárias e na consolidação do estudo da hereditariedade como uma ciência biológica.

Mendel estabeleceu cinco princípios que se aplicam igualmente a todos os seres vivos e se mantêm até hoje:

Cada característica física de um organismo vivo é produto de um “fator hereditário” especifico, que Mendel concebeu como algum tipo de partícula.

Esses fatores hereditários existem aos pares nos seres vivos.

Com respeito a cada uma dessas características, apenas um dos dois fatores existentes na mãe e um dos dois existentes no pai são transmitidos a cada um dos filhos.

Existe uma probabilidade igual de que qualquer um dos fatores da mãe e qualquer um dos fatores do pai seja herdado pelos filhos.

Alguns fatores são dominantes, outros, recessivos.

Nasce a ciência da genética
O geneticista americano Walter S. Sutton apresentou primeiras provas conclusivas de que os cromossomos contêm as unidades da hereditariedade e que eles ocorrem em pares distintos.
Enquanto a mitose relaciona-se à vida cotidiana de vários tipos de células, a meiose lida com os processos fundamentais da genética e da evolução.
A partir de 1903, os seguintes cientistas desenvolveram as descobertas de Darwim, Mendel, Flemming, Weismann e Sutton e refinaram nossa compreensão dos princípios que atuam quando a prole herda dos pais sua constituição genética. :

Herma Nilsson-Ehle: Esse geneticista sueco realizou pesquisas com variedades de trigo e ourtras plantas, refinando e confirmando os cinco princípios medelianos da hereditariedade. No decorrer de sua carreira, ele abriu novos campos de pesquisa sobre os genes e cromossomos e desenvolveu o conhecimento sobre as mutações.

Edward M. Esat: Seu trabalho pioneiro com genética dos vegetais e botânica iniciado em 1900 concluiu que mutações espontâneas nos próprios genes eram responsáveis por certas mudanças ao longo das gerações dessas plantas na ausência de mudanças nas condições ambientais. Essa característica que sofreu mutação é transmitida à prole.

Thomas Hunt Morgan: Esse geneticista e zoólogo fez a monumental descoberta de que os cromossomos não são estruturas permanentes. Em 1909, ele adotou a palavra “gene” para referir-se a um dos “fatores hereditários”de Mendel. Com três de seus alunos, Morgan não só confirmou a teoria de Suttonde que cada cromossomo portava um clecao de genes “enfileirados como contas em um cordão, mas descobriu que a posição de cada uma dessas contas podia ser “mapeado” e identificado em regiões precisas dos cromossomos. Mais importante foi o fato de Morgan e seu grupo terem sido os primeiros a provar que durante o estágio em que os cromossomos emparelham-se e se contraem eles podem trocar material genético entre cromossomos de origem materna e paterna, como observado no estágio da prófase na meiose. Esse processo chama-se cruzamento. O material genético recombinado é transmitido às gerações subseqüentes. Morgan e seus colegas provaram que o processo da variação, que explica circunstancialmente a evolução, não se deve a mutações significativas ocorridas em cada nova geração, mas à recombinação das “contas em uma cordão”-os genes. Morgan estabeleceu uma nítida relação entre Darwin e Mendel, e descobriu que os fatores de Mendel têm uma base física na estrutura cromossômica.

R.F. Fisher, J.B. S.H: Na década de 1920, esse geneticistas, versados em matemática, calcularam, cada um por si mas simultaneamente, que as pequenas variações oriundas de recombinações cromossômicas, juntamente com as mutações espontâneas deduzida por Edward East, podiam explicar matematicamente as grandes mudanças em organismos vivos no decorrer dos intervalos de tempo deduzidos com base nos indícios fosseis e requeridos para a evolução pela seleção natural. Seis décads depois de a Sociedade para o Estudo da Ciência Natural de Brno ter gravemente deixado passar despercebida a importância das estatísticas de Mendel, esses três indivíduos introduziram o tema da genética populacional e forneceram uma base e uma explicação matemática à seleção natural. O Livro de Ronaldo Fisher, The genetical theory of natural selection, publicado em 1930, mostrou particularmente que a lenta mas constante mudança nos genes e cromossomos explica a evolução darwiana. Sewall Wright realizou um trabalho pioneiro em genética populacional matemática e teoria evolucionista.

Bárbara McClintock: Esse geneticista realizou uma serie de experimentos sobre a cor de sementes de milho, os quais forneceram informações novas e conclusivas sobre a recombinação, a realidade e as características de grupos de ligação de genes, e a relação entre genes especifico.

Fonte: www.ime.usp.br

ANATOMIA CELULAR






















Membrana
A membrana que envolve as células delimita o espaço ocupado pelos constituintes da célula, sua função principal é filtragem de substâncias requeridas pelo metabolismos celular . A permeabilidade proposta pela membrana não é apenas de ordem mecânica pois podemos observar que certas partículas de substâncias "grande" passam pela membrana e que outras de tamanho reduzido são rejeitadas. A membrana possui grande capacidade seletiva possibilitando apenas a passagem de substâncias "úteis", buscando sempre o equilíbrio de cargas elétricas e químicas. As membranas também possuem diversas facetas e entre elas esta na capacidade de desenvolver vilos, aumentando assim, sua superfície de absorção.

Constituição da membrana - Formada por uma dupla camada de fosfolipídios (fosfato associado a lipídios), bem como por proteínas espaçadas e que podem atravessar de um lado a outro da membrana. Algumas proteínas estão associadas a glicídios, formando as glicoproteínas (associação de proteína com glicídios - açucares- protege a célula sobre possíveis agressões, retém enzimas, constituindo o glicocálix), que controlam a entrada e a saída de substâncias.

A membrana apresenta duas regiões distintas uma polar (carregada eletricamente) e uma apolar (não apresenta nenhuma carga elétrica).

Propriedades e constituição química
A membrana plasmática é invisível ao microscópio óptico comum, porém sua presença já havia sido proposta pelos citologistas muito antes do surgimento do microscópio eletrônico. Mesmo hoje ainda restam ser esclarecidas muitas dúvidas a seu respeito.

Estrutura
Atualmente o modelo mais aceito é o MODELO DO MOSAICO FLUIDO proposto por Singer e Nicholson. Segundo esse modelo, a membrana seria composta por duas camadas de fosfolipídios onde estão depositadas as proteínas. Algumas dessas proteínas ficam aderidas à superfície da membrana, enquanto outras estão totalmente mergulhadas entre os fosfolipídios; atravessando a membrana de lado a lado. A flexibilidade da membrana é dada pelo movimento contínuo dos fosfolipídios; estes se deslocam sem perder o contato uns com os outros.

As moléculas de proteínas também têm movimento, podendo se deslocar pela membrana, sem direção.



Funções
A membrana plasmática contém e delimita o espaço da célula, mantém condições adequadas para que ocorram as reações metabólicas necessárias. Ela seleciona o que entra e sai da célula, ajuda a manter o formato celular, ajuda a locomoção e muito mais.

As diferenciações da membrana plasmática
Em algumas células, a membrana plasmática mostra modificações ligadas a uma especialização de função. Algumas dessas diferenciações são particularmente bem conhecidas nas células da superfície do intestino.

Microvilosidades
São dobras da membrana plasmática, na superfície da célula voltada para a cavidade do intestino. Calcula-se que cada célula possui em média 2.500 microvilosidades. Como conseqüência de sua existência, há um aumento apreciável da superfície da membrana em contato com o alimento.fig. FA











Desmossomos
São regiões especializadas que ocorrem nas membranas adjacentes de duas células vizinhas. São espécies de presilhas que aumentam a adesão entre uma célula e a outra. Fig FA

Interdigitações
Como os desmossomos também têm um papel importante na coesão de células vizinhas. fig FA

Retículo Endoplasmático
Funciona como sistema circulatório - atua como transportador e armazenador de substâncias. Há dois tipos:

Retículo Endoplasmático Liso:

Onde há a produção de lipídios.

Retículo Endoplasmático Rugoso:


Rugoso por ter aderido a sua superfície externa os ribossomos, local de produção de proteínas, as quais serão transportadas internamente para o Complexo de Golgi. Com origem na membrana plasmática, apresenta também na sua constituição lipídios e proteínas. Além das funções já citadas atua também aumentando a superfície interna da célula produzindo um gradiente de concentração diferenciado.

Ribossomos
São grânulos de ribonucleoproteínas produzidos a partir dos nucléolos. A função dos ribossomos é a síntese protéica pela união de aminoácidos, em processo controlado pelo DNA. O RNA descreve a seqüência dos aminoácidos da proteína. Eles realizam essa função estando no hialoplasma ou preso a membrana do retículo endoplasmático. Quando os ribossomos encontram-se no hialoplasma, unidos pelo RNAm, e só assim são funcionais, denominam-se POLISSOMOS. As proteínas produzidas por esses orgânulos são distribuídas para outras partes do organismo que se faça necessário.

Mitocôndria
Organela citoplasmática formada por duas membranas lipoprotéicas, sendo a interna formada por pregas. O interior é preenchido por um líquido denso, denominado matriz mitocondrial. Dentro delas se realiza o processo de extração de energia dos alimentos (respiração celular) que será armazenada em moléculas de ATP (adenosina trifosfato). É o ATP que fornece energia necessária para as reações químicas celulares. Apresenta forma de bastonete ou esférica. Possuem DNA, RNA e ribossomos próprios, tendo assim capacidade de autoduplicar-se. Quanto maior a atividade metabólica da célula, maior será quantidade de mitocôndrias em seu interior. Apresentam capacidade de movimentação, concentrando-se assim nas regiões da célula com maior necessidade energética (exp. Músculos das coxas) . Alguns cientista acreditam terem sido "procariontes" (bactérias) que passaram a viver simbioticamente no interior das células no início evolutivo da vida (células fornecendo açucares e outras substâncias e bactérias fornecendo energia.).

São grânulos de ribonucleoproteínas produzidos a partir dos nucléolos. A função dos ribossomos é a síntese protéica pela união de aminoácidos, em processo controlado pelo DNA. O RNA descreve a seqüência dos aminoácidos da proteína. Eles realizam essa função estando no hialoplasma ou preso a membrana do retículo endoplasmático. Quando os ribossomos encontram-se no hialoplasma, unidos pelo RNAm, e só assim são funcionais, denominam-se POLISSOMOS. As proteínas produzidas por esses orgânulos são distribuídas para outras partes do organismo que se faça necessário.



Estrutura que apresenta enzimas digestivas capazes de digerir um grande número de produtos orgânicos. Realiza a digestão intracelular. Apresenta-se de 3 formas: lisossomo primário que contém apenas enzimas digestivas em seu interior, lisossomo secundário ou vacúolo digestivo que resulta da fusão de um lisossomo primário e um fagossomo ou pinossomo e o lisossomo terciário ou residual que contém apenas sobras da digestão intracelular. É importante nos glóbulos brancos e de modo geral para a célula já que digere as partes desta (autofagia) que serão substituídas por outras mais novas, o que ocorre com freqüência em nossas células. Realiza também a autólise e histólise (destruição de um tecido) como o que pode ser observado na regressão da cauda dos girinos. originam-se no Complexo de Golgi.

Complexo de Golgi
São estruturas membranosas e achatadas, cuja função é elaborar e armazenar proteínas vidas do retículo endoplasmático; podem também eliminar substâncias produzidas pela célula, mas que irão atuar fora da estrutura celular que originou (enzimas por exemplo). Produzem ainda os lisossomos (suco digestivo celular). É responsável pela formação do acrossomo dos espermatozóides, estrutura que contém hialuronidase que permite a fecundação do óvulo. Nos vegetais denomina-se dictiossomo e é responsável pela formação da lamela média da parede celulósica.



Centríolos
Estruturas cilíndricas, geralmente encontradas aos pares. Dão origem a cílios e flagelos (menos os das bactérias), estando também relacionados com a reprodução celular - formando o fuso acromático que é observado durante a divisão celular. É uma estrutura muito pequena e de difícil observação ao M. Óptico, porém no M. Eletrônico apresenta-se em formação de 9 jogos de 3 microtúbulos dispostos em círculo, formando uma espécie de cilindro oco.

Peroxissomos
Acredita-se que eles têm como função proteger a célula contra altas concentrações de oxigênio, que poderiam destruir moléculas importantes da célula. Os peroxissomos do fígado e dos rins atuam na desintoxicação da célula, ao oxidar, por exemplo, o álcool. Outro papel que os peroxissomos exercem é converter gorduras em glicose, para ser usada na produção de energia.

Núcleo
Acredita-se que eles têm como função proteger a célula contra altas concentrações de oxigênio, que poderiam destruir moléculas importantes da célula. Os peroxissomos do fígado e dos rins atuam na desintoxicação da célula, ao oxidar, por exemplo, o álcool. Outro papel que os peroxissomos exercem é converter gorduras em glicose, para ser usada na produção de energia.

Núcleo - é o administrador da célula, tudo que ocorra em uma célula tem como origem informações gerada apartir dele. O núcleo é uma célula dentro da célula, revestido por uma membrana dupla. Em seu interior encontramos as cromatina, massa de cromossomos - suco nuclear e um nucléolo.

Fonte: www.consulteme.com.br

CICLO CELULAR




As células se reproduzem pela duplicação de seus conteúdos e, então, dividem-se em duas. Este ciclo de divisão celular é a maneira fundamenteal pela qual todos os seres vivos são reproduzidos.

Uma célula em crescimento passa por um ciclo celular que compreende essencialmente em dois períodos: a interfase e a divisão. Por muitos anos, os citologistas preocuparam-se primordialmente com o período de divisão, durante o qual profundas alterações cromossômicas eram vistas ao microscópio óptico, enquanto a interfase era considerada com uma fase de "repouso". Observou-se, entretanto, que as células passam a maior parte de sua vida em interfase, que é um período de atividade biossintética intensa, durante o qual a célula dobra de tamanho e duplica o seu complemento cromossômico. A divisão celular é somente a fase final e microscopicamente visível de uma alteração básica que ocorreu ao nível molecular durante a interfase.

A síntese do DNA ocorre somente em um período estrito da interfase, denominado S ou sintético, que é procedido e seguido por dois intervalos (GAPS) ou períodos de interfase (G1 e G2) onde não ocorre síntese de DNA.

Esta observação levou alguns cientistas dividir o ciclo celular em quatro intervalos sucessivos:

G1- é o período que transcorre entre o final da mitose e o início da síntese do DNA S - é o período de síntese do DNA G2 - é o intervalo entre o final da síntese do DNA e o início da mitose. Durante o período G2 a célula possue o dobro (4C) da quantidade de DNA presente na célula diplóide original (2C) MITOSE - é a divisão celular, depois da mitose as células filhas entram novamente no período G1 e possue o conteúdo de DNA equivalente a 2C A duração do ciclo celular varia consideravelmente de um tipo celular a outro. Para uma célula de manífero crescendo em cultura com um tempo de geração de 16 horas, o tempo dos diferentes períodos seria: G1 = 5 horas S = 7 horas G2 = 3 horas MITOSE = 1 horas

Geralmente, os períodos S, G2 e mitótico são relativamente constante nas diversas células de um mesmo organismo. O período G1 é o mais variável. Dependendo da condição fisiológica das células, pode durar dias, meses e até anos. Os tecidos que normalmente não se dividem (como nervoso ou músculo esquelético), ou que raramente se dividem (como os linfócitos circulantes), possue a mesma quantidade de DNA presente do período G1.

Pode-se saber em que fase do ciclo a célula se encontra pela medida de seu conteúdo de DNA, o qual duplica durante a fase S.


Gráfico mostrando a quantidade de DNA é a variação deste no Ciclo Celular

Em condições que favoreçam o crescimento o conteúdo total de proteína de uma célula típica aumenta mais ou menos continuamente durante o ciclo. Da mesma maneira, a síntese de RNA continua em uma velocidade constante, exceto durante a fase M, quando os cromossomos estão muito condensados para permitir a transcrição. A produção de algumas proteínas-chave é acionada a uma alta velocidade em um estágio específico do ciclo, como por exemplo as histonas que são requeridas para formação de uma nova cromatina e são fabricadas em grande quantidade somente na fase S e o mesmo acontece para algumas das enzimas que participam da produção de desoxirribonucleotídeos e replicação de DNA.

O sistema de controle do ciclo celular é um dispositivo bioquímico que opera ciclicamente, construído a partir de uma série de proteínas que interagem entre si e que induzem e coordenam os processos dependentes essenciais responsáveis pela duplicação e divisão dos conteúdos celulares. No coração desse sistema está uma série de complexos de proteínas formados por dois tipos básicos de compomentes: subunidade de proteínoquinase (chamadas proteínas Cdk) e proteínas ativantes (chamadas ciclinas). NO mínimo dois destes complexos protéicos regulam o ciclo celular normal, um no ponto de controle G1, e se situa antes do início da fase S, e o outro em G2 antes do início da fase M. Estes complexos de proteínas exercem seu controle através de sua ativide quinásica, pela ativação e desativaçaão das quinases em pontos estratégicos do ciclo.

Fonte: www.hurnp.uel.br

Total de visualizações de página

 
Desenvolvido por Othon Fagundes