Tecnologia do Blogger.

7 de abr. de 2010

Cílios


As estruturas responsáveis pela motilidade celular são constituídas por pequenos apêndices, especialmente diferenciados, que variam em número e tamanho. Se são escassos e longos recebem o nome de flagelos, ao passo que se são numerosos e curtos são denominados cílios.

O batimento ciliar é uma forma exaustivamente estudada de movimento celular. Os cílios são apêndices finos, semelhantes a cabelos com O,25 micromêtros de diâmetro, contendo no seu interior um feixe de microtúbulos; estendem-se a partir da superfície de muitos tipos de células e são encontrados na maioria das espécies animais, em muitos protozoários e em algumas plantas inferiores. A função primária dos cílios consiste em movimentar fluido sobre a superfície celular ou deslocar células isoladas através de um fluido. Os protozoários, -por exemplo, usam os cílios tanto para coletar partículas de alimento como para locomoção. Nas células epiteliais que revestem o trato respiratório humano, um número gigantesco de cílios ( 109 /cm2 ou mais) limpam as camadas de muco contendo partículas de poeira e células mortas em direcão à boca, onde serão engolidas ou eliminadas. Os cílios também auxiliam no deslocamento do óvulo pelo oviduto e, uma estrutura relacionada, o flagelo, impulsiona os espermatozóides.


Desenho mostrando as diferenças de movimentos entre o cílios e o flagelo.

Áreas ciliadas se curvam em ondas unidirecionais coordenadas (Figure acima). Cada cilio se move com um movimento de chicote: uma batida para a frente, na qual o cilio se estende totalmente golpeando o líquido circundante, seguida por uma fase de recuperação, na qual ele retorna à sue posição original com um movimento de enrolamento que minimize o arrasto viscoso. Os ciclos dos cilios adjacentes são quase sincrônicos criando um padrão ondulatório de batimento ciliar que pode ser observado ao microscópio. Os flagelos dos espermatozóides e de muitos protozoários são muito semelhantes aos cilios na sua estrutura interna, mas normalmente são muito mais longos. Ao invés de descreverem movimentos de chicote, se movem em ondas quase-sinusoidais (Figure acima). No entanto, a base molecular para seu movimento é a mesma da dos cíilios. Deve ser registrado que os flagelos das bactérias são completamente diferentes dos cíilios e flagelos das células eucarióticas. O movimento de um cíllio ou de um flagelo é produzido pela curvature de seu núcleo, chamado axonema. O axonema é composto por microtúbulos e suas proteinas associadas. Os microtúbulos estão modificados e dispostos num padrão, cujo aspecto curioso e diferente foi uma das revelações mais extraordinárias no inicio da microscopia eletrônica: nove microtúbulos duplos especiais estão dispostos formando um anel ao redor de um par de microtúbulos simples (ver figura). Este arranjo de "9 + 2" é caracteristico de quase todas as formas de cílios ou flagelos eucarióticos- desde protozoários até humanos. Os microtúbulos se estendem de modo contínuo, ao longo do comprimento do axonema que, normalmente possui 10 micromêtros de comprimento, mas, em algumas células, pode alcançar 200 um. Enquanto cada membro do par de microtúbulos individuals (o par central) é um microtúbulo completo, cada um dos pares externos é composto por um microtúbulo completo e outro parcial, mantidos unidos, compartilhando uma parede tubular comum. Em secções transversals, cada microtúbulo completo parece formado por um anel de 13 subunidades enquanto o túbulo incompleto parece possuir somente 11.


Diagrama das partes constituintes de um cílio ou flagelo

Os microtúbulos de um axonema estão associados com numerosas proteínas, que se projetam a distancias regulares ao longo do seu comprimento. Algumas servem para manter os feixes de túbulos unidos através de pontes transversais. Outras geram a força que dirige o movimento de curvatura, enquanto outras formam um sistema de revezamento ativado mecanicamente que controle o movimento de modo a produzir a forma da onde desejada. A mais importante dessas proteínas é a dineina ciliar, cujas cabeças interagem com microtúbulos adjacentes e geram uma força de deslizamento entre eles. Devido as múltiplas pontes que mantém unidos os pares de microtúbulos adjacentes, o que seria um movimento de deslizamento entre microtúbulos livres, transforma-se em movimento de curvature do cílio .

Tal como a dineína citoplasmátic a, dineína ciliar possui um domínio motor que hidrolisa ATP e se move ao longo de um microtúbulo na direção de sue extremidade "menos", e uma cauda que transporte a carga que, neste cave, é um microtúbulo adjacente. A dineína ciliar é consideravelmente maior do que a dineína citoplasmática, tanto no tamanho de sues cadeias pesadas como no número e na complexidade de sues cadeias polipeptídicas. A dineína do flagelo da alga verde unicelular Chlamydomonas, por exemplo, é formada por 2 ou 3 cadeias pesadas (existem múltiplas formas de dineína no flagelo) e por 10 ou mais polipeptídeos menores . Notar (Figura acima) que a cauda da dineína (em vermelho) ciliar liga-se somente ao túbulo A e não ao túbulo B, cuja estrutura é levemente diferente.


Micrografia eletrônica de secções transversal e vertical de um cílio

Os flagelos e cílios crescem a partir de Corpúsculos Basais que estão intimamente relacionados com os Centríolos.

Se os dois flagelos da alga verde Chlamydomonas forem removidos, eles se formam rapidamente de novo por alongamento a partir de estruturas chamadas corpúsculos basais. Os corpúsculos basais possuem a mesma estrutura dos centríolos que são encontrados embutidos no centro dos centrossomos das células animals. De fato, em alguns organismos, os corpúsculos e os centríolos parecem ser funcionalmente interconversíveis: por exemplo, durante cada mitose da Chlamydomonas, os flagelos são reabsorvidos e os corpúsculos basais se movem para o interior da célula e inserem-se nos pólos do fuso. Os centríolos e os corpúsculos basais são estruturas cilíndricas, com 0,2 um de largura e 0,4 um de comprimento. Nove grupos de três microtúbulos, fundidos em tripletes, formam a parede do centríolo e cada triplete se incline para dentro como as lâminas de uma turbine (Ver Figura). Tripletes adjacentes ligam-se ao longo de seu comprimento a intervalos regulares, enquanto tênues raios protéicos podem ser vistos em micrografias eletrônicas irradiando-se para fore de cada triplete a partir de um núcleo central, formando um padrão semelhante a uma rode de carroça (veja Figura). Durante a formação ou a regeneração de um ci1io, cada par de microtúbulos do axonema se forma a partir de dois dos microtúbulos do triplete do corpúsculo basal e, desta forma, a simetria característica de 9 elementos é preservada. Não se sabe como o par central se forma no axonema; essa estrutura não é encontrada nos corpúsculos basais.

Micrografia eletrônica de uma secção transversal de dois corpúsculos basais no córtex de um protozoário. Desenho esquemático da vista lateral de um corpúsculo basal, constituído por nove tripletes de microtúbulos. A estrutura de um centríolo é essencialmente a mesma.

Fonte: www.hurnp.uel.br

2 comentários:

Kiinha Patty disse...

# Tá tudo de ótiimO katiia ! õ/
- 'adoreei prof os conteúdos!
- tÔ seempre por aquiii dando uma olhadiinha nas materias e revisando as aulas...
preencha sempre de assuntos novos!
xerããO
:*

Katia disse...

obrigada!!!!!!atualizarei sempre.. diariamente!!!

Postar um comentário

Total de visualizações de página

 
Desenvolvido por Othon Fagundes