Tecnologia do Blogger.

12 de abr. de 2010

A energia no ecossistema


CICLOS DA MATÉRIA
A energia no ecossistema
A existência da comunidade de um ecossistema está ligada à energia necessária à sobrevivência dos seres vivos a ela pertencentes. De maneira geral, num ecossistema, existem vegetais capazes de realizar fotossíntese. Deles dependem todos os demais seres vivos. O Sol é a fonte de energia utilizada pelos vegetais fotossintetizantes, que transformam a energia solar em energia química contida nos alimentos orgânicos. Durante a realização das reações metabólicas dos seres vivos, parte da energia química se transforma em calor, que é liberado para o ecossistema. Assim a energia segue um fluxo unidirecional.

A energia flui unidirecionalmente ao longo do ecossistema e é sempre renovada pela luz solar. A matéria orgânica, porém, precisa ser reciclada e nesse processo participam os seres vivos. Em qualquer ciclo existe a retirada do elemento ou substância de sua fonte, utilização por seres vivos e devolução para a sua fonte. Os mais importantes ciclos da matéria são o da água, o do carbono e o do nitrogênio.

Ciclo do oxigênio

Ciclo do oxigênio


O ciclo do oxigênio é complexo, uma vez que esse elemento é utilizado e liberado pelos seres vivos em diferentes formas de combinação química. O principal reservatório de oxigênio para os seres vivos é a atmosfera, onde esse elemento se encontra na forma de gás oxigênio (O2) e de gás carbônico (CO2).

O O2 é utilizado na respiração aeróbica das plantas e animais. Nesse processo, átomos de oxigênio combinam-se com átomos de hidrogênio, formando moléculas de água. A água formada na respiração, chamada água metabólica é, em parte, eliminada para o ambiente através da transpiração, da excreção e das fezes, em parte utilizada em processos metabólicos. Dessa forma, seus átomos de oxigênio acabam incorporados à matéria orgânica e podem voltar à atmosfera pela respiração e pela decomposição do organismo, que produzem água e gás carbônico.

O CO2 atmosférico é utilizado no processo de fotossíntese. Os carbonos e os oxigenados presentes no gás carbônico passam a fazer parte da matéria orgânica do vegetal, e tanto a respiração como a decomposição dessa matéria orgânica restituirão o oxigênio à atmosfera, na forma de água e gás carbônico. A água utilizada pelas plantas na fotossíntese é quebrada, e seus átomos de oxigênio são liberados para a atmosfera na forma de O2.

As três principais fontes não-vivas de átomos de oxigênio para os seres vivos são, portanto, gás oxigênio (O2), gás carbônico (CO2) e água (h4O). Esses três tipos de molécula estão constantemente trocando átomos de oxigênio entre si, durante os processos metabólicos da biosfera.

Ciclo do nitrogênio



Ciclo do nitrogênio


O nitrogênio molecular, N2, é um gás biologicamente não-utilizável pela maioria dos seres vivos. Seu ingresso no mundo vivo ocorre graças à atividade dos microrganismos fixadores, as algas azuis e algumas bactérias, que o transformam em amônia. No processo de nitrificação, outras bactérias transformam a amônia em nitritos e nitratos.

Essas três substâncias são utilizadas pelos vegetais para a elaboração de compostos orgânicos nitrogenados que serão aproveitados pelos animais. O ciclo fecha-se a partir da atividade de certas espécies de bactérias, que efetuam a denitrificação e devolvem o nitrogênio molecular para a atmosfera.

O plantio de leguminosas(feijão, por exemplo),a chamada adubação verde, enriquece o solo com compostos nitrogenados, uma vez que nas raízes dessas plantas há nódulos repletos de bactérias fixadoras de nitrogênio.

Outro procedimento agrícola usual é a rotação de culturas, na qual se alterna o plantio de não-leguminosas, que retiram do solo os nutrientes nitrogenados, com leguminosas que devolvem esses nutrientes para o meio.

Ciclo da água
Embora a água não seja um elemento químico, e sim uma substância composta de hidrogênio e oxigênio, estudaremos o seu ciclo pelo fato de ela estar intimamente associada a todos os processos metabólicos.

O ciclo da água pode ser considerado sob dois aspectos: o pequeno ciclo, ou ciclo curto, e o grande ciclo, ou ciclo longo.

Pequeno ciclo
No pequeno ciclo, a água dos oceanos, lagos, rios, geleiras e mesmo a embebida no solo sofre evaporação pela ação do calor ambiental e passa à forma de vapor, dando origem às nuvens. Nas camadas mais altas da atmosfera, o vapor d’água sofre condensação, e a água líquida volta à crosta terrestre na forma de chuva.

O ciclo das chuvas foi um dos responsáveis pelo resfriamento relativamente rápido da crosta terrestre, nos primórdios de nosso Planeta. Hoje, o ciclo das chuvas contribui para tornar o clima da Terra favorável à vida.

Grande ciclo


No grande ciclo, a água é absorvida pelos seres vivos e participa do metabolismo deles, sendo posteriormente devolvida para o ambiente.

As plantas absorvem, por meio de suas raízes, a água infiltrada no solo. Além de ser solvente e reagente de inúmeras reações químicas intracelulares, a água é uma das matérias-primas da fotossíntese: seus átomos de hidrogênio irão fazer parte da glicose fabricada, e seus átomos de oxigênio se unem para formar o O2 (gás oxigênio) liberado para a atmosfera. Na respiração, as plantas degradam as moléculas orgânicas que elas mesmas fabricam para obter energia, liberando gás carbônico e água.

As plantas estão sempre perdendo água por meio da transpiração, principalmente durante o dia, quando seus estômatos estão abertos. É por isso que o ar é úmido nas florestas e seco nos desertos e áreas desmatadas. Uma vez que absorvem água do solo e a liberam, como vapor, para atmosfera, as plantas contribuem para a manutenção de um grau de umidade do ar altamente favorável à vida.



O nitrogênio é o gás mais abundante da atmosfera.

O nitrogênio compõe proteínas, DNA, RNA, vitaminas, clorofila, ATP e outros compostos orgânicos de grande importância.

Os únicos seres que fixam o nitrogênio são bactérias, cianobactérias e fungos por apresentarem enzimas apropriadas para essa função.



Como plantas e animais conseguem obter o nitrogênio necessário para comporem suas moléculas?

As bactérias são as principais personagens do ciclo do nitrogênio. Veja alguns tipos mais comuns:
Fixadoras
AÇÃO: N2 >>> NO3--

Vivem livres no solo ou em associação com leguminosas formando o que se chama BACTERIORRIZA.

Denitrificantes
AÇÃO: NO3-- >>> N2

Vivem no solo e ajudam a equilibrar o ciclo.

Decompositoras
AÇÂO: Matéria Orgânica >>> Nh4

Nitrificantes


- As queimadas trazem que tipo de prejuízo para o ciclo do nitrogênio?

- O que é proteção de culturas?

- Por que no sertão se planta feijão junto com o milho?

Ciclo do carbono






Ciclo do carbono
O carbono presente nos seres vivos é, originalmente, proveniente da atmosfera. Por meio da fotossíntese, os seres fotossintetizantes fixam o carbono que retiram do CO2 atmosférico. Esses átomos de carbono passam a fazer parte das moléculas orgânicas fabricadas.

Durante a respiração, uma parte das moléculas orgânicas é degradada, e o carbono que as constituía é devolvido à atmosfera, novamente na forma de CO2. Parte do carbono retirado do ar passa a constituir a biomassa dos seres fotossintetizantes, podendo eventualmente ser transferida aos animais herbívoros.

Nos herbívoros, parte do carbono contido nas moléculas orgânicas dos alimentos é liberada durante a respiração, e o resto irá constituir sua biomassa, que poderá ser transferida para um carnívoro. Dessa forma, o carbono fixado pela fotossíntese vai passando de um nível trófico para outro, enquanto retorna gradativamente à atmosfera, em conseqüência da respiração dos próprios organismos e da ação dos decompositores, que atuam em todos os níveis tróficos.

Combustíveis fósseis


Algumas vezes, o retorno do carbono para a atmosfera é demorado, levando milhões de anos para ocorrer. É o caso dos compostos de carbono que não foram atacados pelos decompositores e transformaram-se, no subsolo, em carvão, turfa e petróleo.

A utilização desses combustíveis fósseis pelo homem tem restituído à atmosfera, na forma de CO2, átomos de carbono que ficaram fora de circulação durante milhões de anos.

Devido à queima de combustíveis, a concentração de gás carbônico no ar aumentou, nesses últimos 100 anos, de 0,029% para cerca de 0,04% da composição atmosférica. Embora pareça pouco, esse aumento é, em termos proporcionais, da ordem de 38%. De acordo com muitos cientistas, o aumento do teor de CO2 atmosférico pode provocar a elevação da temperatura média global por causa do efeito estufa.





ProgramaBioUFRN

BIOLOGIA

APRESENTAÇÃO

A compreensão das diversas manifestações da vida no mundo atual pressupõe, antes de tudo, reconhecer

que a vida é um processo complexo, que inclui as relações de um organismo com o ambiente que o cerca e com

os outros seres que compartilham com ele esse ambiente. Além de promover a compreensão e o reconhecimento

das propriedades básicas dos seres vivos (metabolismo, reprodução, herança, variação e seleção), o estudo da

Biologia deve considerar as muitas modificações que a vida sofreu ao longo do desenvolvimento do planeta,

buscando a adaptação a um ambiente variável, o que levou à grande diversidade e complexidade encontradas na

biosfera atual. Além disso, é fundamental considerar o papel desempenhado pela ação da espécie humana, dada

a amplitude e intensidade dos efeitos que a sua intervenção pode ter sobre essa mesma biosfera.

Nessa perspectiva, os conteúdos foram organizados partindo de aspectos macroscópicos (ecologia) para

os microscópicos (a célula). Recomenda-se, pois, que o candidato inicie o seu estudo pela análise das relações

entre os seres vivos e deles com o ambiente (aquilo que vemos) e, passando pela compreensão da organização

dos seres vivos e dos processos vitais, chegue à sede da vida (a célula). O caminho contrário possibilita explicar

os aspectos macroscópicos usando os modelos teóricos da Biologia. Embora estejam incluídos no conjunto dos

conteúdos, preferiu-se destacar em tópicos separados os temas saúde e doença e reprodução humana, dada a

sua importância para a qualidade de vida dos indivíduos, em particular, e da sociedade, em geral.

Em vez de simplesmente citar termos e associá-los a funções, espera-se que o candidato seja capaz de

aplicar os conhecimentos básicos da Biologia, de forma integrada (inclusive com outras ciências), na resolução

de problemas e interpretação de fatos do cotidiano.

OBJETIVOS

Compreender as diversas manifestações da vida e suas interações com o meio ambiente, levando em

consideração os diversos processos de troca de matéria e energia;

reconhecer a biodiversidade como sendo o resultado de transformações adaptativas que aconteceram ao

longo da história evolutiva;

reconhecer o caráter dinâmico da natureza, compreendendo o papel das reações químicas e dos processos

físicos para a manutenção do processo vital;

diagnosticar e propor soluções para problemas reais a partir de elementos da Biologia;

avaliar os efeitos da degradação ambiental sobre os seres vivos e, por conseqüência, sobre a saúde

humana, a qual, mais do que ausência de doença, deve ser compreendida como bem-estar físico, social e

psicológico do indivíduo;

reconhecer as contribuições da Biologia na produção e aplicação do conhecimento científico e tecnológico,

levando em consideração os aspectos históricos e éticos.

CONTEÚDOS

I - ECOLOGIA

1. Populações e comunidades

2. Relações entre os seres vivos

3. Cadeias e teias alimentares

4. Transferência de matéria e energia

5. Ciclos biogeoquímicos

6. Efeitos da ação humana sobre o ambiente

II - SERES VIVOS

1. Classificação e características gerais dos reinos Monera, Protista, Fungi, Plantae e Animalia

2. Vírus e príons

3. Reino Animalia

3.1 Animais invertebrados e vertebrados

3.2 Funções biológicas: digestão, circulação, respiração, controles nervoso e hormonal, excreção,

reprodução, defesa

4. Reino Plantae

4.1 Briófitas, pteridófitas e fanerógamas

4.2 Funções biológicas: fotossíntese, circulação, respiração, transpiração, controle hormonal, reprodução

III - A CÉLULA

1. Química da vida: água, sais minerais, carboidratos, lipídios, proteínas, ácidos nucléicos e vitaminas

2. Parede celular: estrutura e função

3. Membranas: estrutura e função

4. Organelas citoplasmáticas: estruturas, funções e inter-relações

5. Núcleo celular: componentes e funções

6. Material genético: estrutura, duplicação, transcrição e tradução dos ácidos nucléicos

7. Divisão celular: mitose e meiose

IV - GENÉTICA

1. Fenótipo e genótipo

2. Leis de Mendel

3. Hibridismo

4. Descendência e probabilidades

5. Dominância, polialelia, interação gênica, epistasia, pleiotropia, ligação gênica, genes letais

6. Sexo e herança

7. Aberrações cromossômicas

V - EVOLUÇÃO

1. Teorias evolucionistas: lamarckismo, darwinismo e teoria sintética

2. Fatores evolutivos: migração, mutação, seleção natural e recombinação gênica

3. Especiação

VI - REPRODUÇÃO HUMANA

1. Fecundação e gravidez

2. Desenvolvimento embrionário

3. Controle de natalidade

4. Reprodução assistida

VII - SAÚDE E DOENÇA

1. Conceito de saúde

2. Fome e doença

3. Doenças infecciosas e parasitárias: endemias e epidemias

4. Doenças sexualmente transmissíveis

5. Doenças hereditárias

6. Transmissão e prevenção de doenças

VII - BIOTECNOLOGIA

1. Transgênicos, clonagem, testes de DNA, células-tronco, produção de embriões

2. Bioética

Total de visualizações de página

 
Desenvolvido por Othon Fagundes