Tecnologia do Blogger.

19 de mar. de 2010

ANATOMIA CELULAR






















Membrana
A membrana que envolve as células delimita o espaço ocupado pelos constituintes da célula, sua função principal é filtragem de substâncias requeridas pelo metabolismos celular . A permeabilidade proposta pela membrana não é apenas de ordem mecânica pois podemos observar que certas partículas de substâncias "grande" passam pela membrana e que outras de tamanho reduzido são rejeitadas. A membrana possui grande capacidade seletiva possibilitando apenas a passagem de substâncias "úteis", buscando sempre o equilíbrio de cargas elétricas e químicas. As membranas também possuem diversas facetas e entre elas esta na capacidade de desenvolver vilos, aumentando assim, sua superfície de absorção.

Constituição da membrana - Formada por uma dupla camada de fosfolipídios (fosfato associado a lipídios), bem como por proteínas espaçadas e que podem atravessar de um lado a outro da membrana. Algumas proteínas estão associadas a glicídios, formando as glicoproteínas (associação de proteína com glicídios - açucares- protege a célula sobre possíveis agressões, retém enzimas, constituindo o glicocálix), que controlam a entrada e a saída de substâncias.

A membrana apresenta duas regiões distintas uma polar (carregada eletricamente) e uma apolar (não apresenta nenhuma carga elétrica).

Propriedades e constituição química
A membrana plasmática é invisível ao microscópio óptico comum, porém sua presença já havia sido proposta pelos citologistas muito antes do surgimento do microscópio eletrônico. Mesmo hoje ainda restam ser esclarecidas muitas dúvidas a seu respeito.

Estrutura
Atualmente o modelo mais aceito é o MODELO DO MOSAICO FLUIDO proposto por Singer e Nicholson. Segundo esse modelo, a membrana seria composta por duas camadas de fosfolipídios onde estão depositadas as proteínas. Algumas dessas proteínas ficam aderidas à superfície da membrana, enquanto outras estão totalmente mergulhadas entre os fosfolipídios; atravessando a membrana de lado a lado. A flexibilidade da membrana é dada pelo movimento contínuo dos fosfolipídios; estes se deslocam sem perder o contato uns com os outros.

As moléculas de proteínas também têm movimento, podendo se deslocar pela membrana, sem direção.



Funções
A membrana plasmática contém e delimita o espaço da célula, mantém condições adequadas para que ocorram as reações metabólicas necessárias. Ela seleciona o que entra e sai da célula, ajuda a manter o formato celular, ajuda a locomoção e muito mais.

As diferenciações da membrana plasmática
Em algumas células, a membrana plasmática mostra modificações ligadas a uma especialização de função. Algumas dessas diferenciações são particularmente bem conhecidas nas células da superfície do intestino.

Microvilosidades
São dobras da membrana plasmática, na superfície da célula voltada para a cavidade do intestino. Calcula-se que cada célula possui em média 2.500 microvilosidades. Como conseqüência de sua existência, há um aumento apreciável da superfície da membrana em contato com o alimento.fig. FA











Desmossomos
São regiões especializadas que ocorrem nas membranas adjacentes de duas células vizinhas. São espécies de presilhas que aumentam a adesão entre uma célula e a outra. Fig FA

Interdigitações
Como os desmossomos também têm um papel importante na coesão de células vizinhas. fig FA

Retículo Endoplasmático
Funciona como sistema circulatório - atua como transportador e armazenador de substâncias. Há dois tipos:

Retículo Endoplasmático Liso:

Onde há a produção de lipídios.

Retículo Endoplasmático Rugoso:


Rugoso por ter aderido a sua superfície externa os ribossomos, local de produção de proteínas, as quais serão transportadas internamente para o Complexo de Golgi. Com origem na membrana plasmática, apresenta também na sua constituição lipídios e proteínas. Além das funções já citadas atua também aumentando a superfície interna da célula produzindo um gradiente de concentração diferenciado.

Ribossomos
São grânulos de ribonucleoproteínas produzidos a partir dos nucléolos. A função dos ribossomos é a síntese protéica pela união de aminoácidos, em processo controlado pelo DNA. O RNA descreve a seqüência dos aminoácidos da proteína. Eles realizam essa função estando no hialoplasma ou preso a membrana do retículo endoplasmático. Quando os ribossomos encontram-se no hialoplasma, unidos pelo RNAm, e só assim são funcionais, denominam-se POLISSOMOS. As proteínas produzidas por esses orgânulos são distribuídas para outras partes do organismo que se faça necessário.

Mitocôndria
Organela citoplasmática formada por duas membranas lipoprotéicas, sendo a interna formada por pregas. O interior é preenchido por um líquido denso, denominado matriz mitocondrial. Dentro delas se realiza o processo de extração de energia dos alimentos (respiração celular) que será armazenada em moléculas de ATP (adenosina trifosfato). É o ATP que fornece energia necessária para as reações químicas celulares. Apresenta forma de bastonete ou esférica. Possuem DNA, RNA e ribossomos próprios, tendo assim capacidade de autoduplicar-se. Quanto maior a atividade metabólica da célula, maior será quantidade de mitocôndrias em seu interior. Apresentam capacidade de movimentação, concentrando-se assim nas regiões da célula com maior necessidade energética (exp. Músculos das coxas) . Alguns cientista acreditam terem sido "procariontes" (bactérias) que passaram a viver simbioticamente no interior das células no início evolutivo da vida (células fornecendo açucares e outras substâncias e bactérias fornecendo energia.).

São grânulos de ribonucleoproteínas produzidos a partir dos nucléolos. A função dos ribossomos é a síntese protéica pela união de aminoácidos, em processo controlado pelo DNA. O RNA descreve a seqüência dos aminoácidos da proteína. Eles realizam essa função estando no hialoplasma ou preso a membrana do retículo endoplasmático. Quando os ribossomos encontram-se no hialoplasma, unidos pelo RNAm, e só assim são funcionais, denominam-se POLISSOMOS. As proteínas produzidas por esses orgânulos são distribuídas para outras partes do organismo que se faça necessário.



Estrutura que apresenta enzimas digestivas capazes de digerir um grande número de produtos orgânicos. Realiza a digestão intracelular. Apresenta-se de 3 formas: lisossomo primário que contém apenas enzimas digestivas em seu interior, lisossomo secundário ou vacúolo digestivo que resulta da fusão de um lisossomo primário e um fagossomo ou pinossomo e o lisossomo terciário ou residual que contém apenas sobras da digestão intracelular. É importante nos glóbulos brancos e de modo geral para a célula já que digere as partes desta (autofagia) que serão substituídas por outras mais novas, o que ocorre com freqüência em nossas células. Realiza também a autólise e histólise (destruição de um tecido) como o que pode ser observado na regressão da cauda dos girinos. originam-se no Complexo de Golgi.

Complexo de Golgi
São estruturas membranosas e achatadas, cuja função é elaborar e armazenar proteínas vidas do retículo endoplasmático; podem também eliminar substâncias produzidas pela célula, mas que irão atuar fora da estrutura celular que originou (enzimas por exemplo). Produzem ainda os lisossomos (suco digestivo celular). É responsável pela formação do acrossomo dos espermatozóides, estrutura que contém hialuronidase que permite a fecundação do óvulo. Nos vegetais denomina-se dictiossomo e é responsável pela formação da lamela média da parede celulósica.



Centríolos
Estruturas cilíndricas, geralmente encontradas aos pares. Dão origem a cílios e flagelos (menos os das bactérias), estando também relacionados com a reprodução celular - formando o fuso acromático que é observado durante a divisão celular. É uma estrutura muito pequena e de difícil observação ao M. Óptico, porém no M. Eletrônico apresenta-se em formação de 9 jogos de 3 microtúbulos dispostos em círculo, formando uma espécie de cilindro oco.

Peroxissomos
Acredita-se que eles têm como função proteger a célula contra altas concentrações de oxigênio, que poderiam destruir moléculas importantes da célula. Os peroxissomos do fígado e dos rins atuam na desintoxicação da célula, ao oxidar, por exemplo, o álcool. Outro papel que os peroxissomos exercem é converter gorduras em glicose, para ser usada na produção de energia.

Núcleo
Acredita-se que eles têm como função proteger a célula contra altas concentrações de oxigênio, que poderiam destruir moléculas importantes da célula. Os peroxissomos do fígado e dos rins atuam na desintoxicação da célula, ao oxidar, por exemplo, o álcool. Outro papel que os peroxissomos exercem é converter gorduras em glicose, para ser usada na produção de energia.

Núcleo - é o administrador da célula, tudo que ocorra em uma célula tem como origem informações gerada apartir dele. O núcleo é uma célula dentro da célula, revestido por uma membrana dupla. Em seu interior encontramos as cromatina, massa de cromossomos - suco nuclear e um nucléolo.

Fonte: www.consulteme.com.br

CICLO CELULAR




As células se reproduzem pela duplicação de seus conteúdos e, então, dividem-se em duas. Este ciclo de divisão celular é a maneira fundamenteal pela qual todos os seres vivos são reproduzidos.

Uma célula em crescimento passa por um ciclo celular que compreende essencialmente em dois períodos: a interfase e a divisão. Por muitos anos, os citologistas preocuparam-se primordialmente com o período de divisão, durante o qual profundas alterações cromossômicas eram vistas ao microscópio óptico, enquanto a interfase era considerada com uma fase de "repouso". Observou-se, entretanto, que as células passam a maior parte de sua vida em interfase, que é um período de atividade biossintética intensa, durante o qual a célula dobra de tamanho e duplica o seu complemento cromossômico. A divisão celular é somente a fase final e microscopicamente visível de uma alteração básica que ocorreu ao nível molecular durante a interfase.

A síntese do DNA ocorre somente em um período estrito da interfase, denominado S ou sintético, que é procedido e seguido por dois intervalos (GAPS) ou períodos de interfase (G1 e G2) onde não ocorre síntese de DNA.

Esta observação levou alguns cientistas dividir o ciclo celular em quatro intervalos sucessivos:

G1- é o período que transcorre entre o final da mitose e o início da síntese do DNA S - é o período de síntese do DNA G2 - é o intervalo entre o final da síntese do DNA e o início da mitose. Durante o período G2 a célula possue o dobro (4C) da quantidade de DNA presente na célula diplóide original (2C) MITOSE - é a divisão celular, depois da mitose as células filhas entram novamente no período G1 e possue o conteúdo de DNA equivalente a 2C A duração do ciclo celular varia consideravelmente de um tipo celular a outro. Para uma célula de manífero crescendo em cultura com um tempo de geração de 16 horas, o tempo dos diferentes períodos seria: G1 = 5 horas S = 7 horas G2 = 3 horas MITOSE = 1 horas

Geralmente, os períodos S, G2 e mitótico são relativamente constante nas diversas células de um mesmo organismo. O período G1 é o mais variável. Dependendo da condição fisiológica das células, pode durar dias, meses e até anos. Os tecidos que normalmente não se dividem (como nervoso ou músculo esquelético), ou que raramente se dividem (como os linfócitos circulantes), possue a mesma quantidade de DNA presente do período G1.

Pode-se saber em que fase do ciclo a célula se encontra pela medida de seu conteúdo de DNA, o qual duplica durante a fase S.


Gráfico mostrando a quantidade de DNA é a variação deste no Ciclo Celular

Em condições que favoreçam o crescimento o conteúdo total de proteína de uma célula típica aumenta mais ou menos continuamente durante o ciclo. Da mesma maneira, a síntese de RNA continua em uma velocidade constante, exceto durante a fase M, quando os cromossomos estão muito condensados para permitir a transcrição. A produção de algumas proteínas-chave é acionada a uma alta velocidade em um estágio específico do ciclo, como por exemplo as histonas que são requeridas para formação de uma nova cromatina e são fabricadas em grande quantidade somente na fase S e o mesmo acontece para algumas das enzimas que participam da produção de desoxirribonucleotídeos e replicação de DNA.

O sistema de controle do ciclo celular é um dispositivo bioquímico que opera ciclicamente, construído a partir de uma série de proteínas que interagem entre si e que induzem e coordenam os processos dependentes essenciais responsáveis pela duplicação e divisão dos conteúdos celulares. No coração desse sistema está uma série de complexos de proteínas formados por dois tipos básicos de compomentes: subunidade de proteínoquinase (chamadas proteínas Cdk) e proteínas ativantes (chamadas ciclinas). NO mínimo dois destes complexos protéicos regulam o ciclo celular normal, um no ponto de controle G1, e se situa antes do início da fase S, e o outro em G2 antes do início da fase M. Estes complexos de proteínas exercem seu controle através de sua ativide quinásica, pela ativação e desativaçaão das quinases em pontos estratégicos do ciclo.

Fonte: www.hurnp.uel.br

Medicina do Futuro

Todo organismo pluricelular é composto por diferentes tipos de células. Entre as cerca de 75 trilhões de células existentes em um homem adulto, por exemplo, são encontrados em torno de 200 tipos celulares distintos. Todos eles derivam de células precursoras, denominadas ‘células-tronco’. O processo de diferenciação, que gera as células especializadas — da pele, dos ossos e cartilagens, do sangue, dos músculos, do sistema nervoso e dos outros órgãos e tecidos humanos — é regulado, em cada caso, pela expressão de genes específicos na célula-tronco, mas ainda não se sabe em detalhes como isso ocorre e que outros fatores estão envolvidos. Compreender e controlar esse processo é um dos grandes desafios da ciência na atualidade.

A célula-tronco prototípica é o óvulo fertilizado (zigoto). Essa única célula é capaz de gerar todos os tipos celulares existentes em um organismo adulto, até os gametas — óvulos e espermatozóides — que darão origem a novos zigotos. A incrível capacidade de gerar um organismo adulto completo a partir de apenas uma célula tem fascinado os biólogos desde que o fisiologista alemão Theodor Schwann (1810-1882) lançou, em 1839, as bases da teoria celular.

,

Células Tronco Embrionária

As células-tronco embrionárias são estudadas desde o século 19, mas só há 20 anos dois grupos independentes de pesquisadores conseguiram imortalizá-las, ou seja, cultivá-las indefinidamente em laboratório. Para isso, utilizaram células retiradas da massa celular interna de blastocistos (um dos estágios iniciais dos embriões de mamíferos) de camundongos. Essas células são conhecidas pela sigla ES, do inglês embryonic stem cells (células-tronco embrionárias), e são denominadas pluripotentes, pois podem proliferar indefinidamente in vitro sem se diferenciar, mas também podem se diferenciar se forem modificadas as condições de cultivo (figura 3).

De fato, é preciso cultivar as células ES sob condições muito especiais para que proliferem e continuem indiferenciadas, e encontrar essas condições foi o grande desafio vencido pelos cientistas.

Células Tronco Adultas

Sabe-se, desde os anos 60, que alguns tecidos de um organismo adulto se regeneram constantemente. Isso acontece com a pele, com as paredes intestinais e principalmente com o sangue, que têm suas células destruídas e renovadas o tempo inteiro, em um complexo e finamente regulado processo de proliferação e diferenciação celular.

Os estudos feitos há décadas sobre a hematopoiese (processo de produção de células sangüíneas) a partir de células-tronco multipotentes, localizadas no interior dos ossos, mostraram que elas originam células progressivamente mais diferenciadas e com menor capacidade proliferativa. Essas células-tronco podem gerar as linhagens precursoras mielóide e linfóide, que terminam por dar origem a todos os nove tipos celulares presentes no sangue, de hemácias a linfócitos. A renovação do sangue é tão intensa que diariamente entram em circulação cerca de 8 mil novas células sangüíneas. É assombroso que o organismo consiga controlar um processo proliferativo tão exuberante, impedindo, em circunstâncias normais, que o número de células produzidas exceda o necessário e que as células liberadas na circulação estejam no estágio correto de diferenciação.

É relativamente recente a constatação de que, além da pele, do intestino e da medula óssea, outros tecidos e órgãos humanos — fígado, pâncreas, músculos esqueléticos (associados ao sistema locomotor), tecido adiposo e sistema nervoso — têm um estoque de células-tronco e uma capacidade limitada de regeneração após lesões. Mais recente ainda é a idéia de que essas células-tronco ‘adultas’ são não apenas multipotentes (capazes de gerar os tipos celulares que compõem o tecido ou órgão específico onde estão situadas), mas também pluripotentes (podem gerar células de outros órgãos e tecidos).

O primeiro relato incontestável dessa propriedade das células-tronco adultas foi feito em 1998 por cientistas italianos, após um estudo — liderado pela bióloga Giuliana Ferrari, no Instituto San Rafaelle-Telethon — em que células derivadas da medula óssea regeneraram um músculo esquelético. Embora esse tipo de músculo também tenha células-tronco (‘células-satélite’), os pesquisadores usaram células da medula óssea, geneticamente marcadas para identificação posterior. Essas células, quando injetadas em músculos (lesados quimicamente) de camundongos geneticamente imunodeficientes, mostraram-se capazes de se diferenciar em células musculares, reduzindo a lesão.

Em outro experimento, em vez da injeção de células medulares diretamente na lesão muscular, os camundongos imunodeficientes receberam um transplante de medula óssea. Feito o transplante, os pesquisadores verificaram que as células-tronco (geneticamente marcadas, e por isso identificáveis como do animal doador) migraram da medula para a área muscular lesada do animal. Isso demonstrou que, existindo uma lesão muscular, células-tronco medulares adultas podem migrar até a região lesada e se diferenciar em células musculares esqueléticas.

O trabalho, portanto, estabeleceu duas novas e importantes idéias: células-tronco de medula óssea podem dar origem a células musculares esqueléticas e podem migrar da medula para regiões lesadas no músculo. Nesse trabalho, porém, as células-tronco de medula, de reconhecida plasticidade, deram origem a células não medulares mas de mesma origem embriológica, já que tanto o tecido muscular quanto as células do sangue derivam do mesoderma (uma das três camadas germinais que aparecem no início da formação do embrião).

Um resultado ainda mais surpreendente foi relatado em janeiro de 1999 por cientistas liderados por dois neurobiólogos, o canadense Christopher Bjornson e o italiano Angelo Vescovi. Em seu trabalho, publicado na revista Science, com o título ‘Transformando cérebro em sangue: um destino hematopoiético adotado por uma célula-tronco neural adulta in vivo’, eles demonstraram que células-tronco neurais de camundongos adultos podem restaurar as células hematopoiéticas em camundongos que tiveram a medula óssea destruída por irradiação.

Esse achado revolucionou os conceitos até então vigentes, pois demonstrou que uma célula tronco-adulta derivada de um tecido altamente diferenciado e com limitada capacidade de proliferação pode seguir um programa de diferenciação totalmente diverso se colocada em um ambiente adequado. Também deixou claro que o potencial de diferenciação das células-tronco adultas não é limitado por sua origem embriológica: células neurais têm origem no ectoderma e células sangüíneas vêm do mesoderma embrionário.

Ainda em 1999, em outros estudos, células-tronco adultas da medula óssea de camundongos transformaram-se em precursores hepáticos e, pela primeira vez, células-tronco adultas de medula óssea humana foram induzidas a se diferenciar, in vitro, nas linhagens condrocítica (cartilagem), osteocítica (osso) e adipogênica (gordura). Em junho de 2000, um grupo do Instituto Karolinska (Suécia), liderado por Jonas Frisen, confirmou que células-tronco neurais de camundongos adultos têm capacidade generalizada de diferenciação, podendo gerar qualquer tipo celular, de músculo cardíaco a estômago, intestino, fígado e rim, quando injetadas em embriões de galinha e camundongo. Esse resultado quebrou todos os dogmas, indicando que uma célula-tronco adulta é capaz de se diferenciar em qualquer tipo de célula, independentemente de seu tecido de origem, desde que cultivada sob condições adequadas.

Essa pluripotencialidade das células-tronco adultas coloca a questão do uso medicinal dessas células em bases totalmente novas. São eliminadas não só as questões ético-religiosas envolvidas no emprego das células-tronco embrionárias, mas também os problemas de rejeição imunológica, já que células-tronco do próprio paciente adulto podem ser usadas para regenerar seus tecidos ou órgãos lesados. Torna ainda possível imaginar que um dia não haverá mais filas para os transplantes de órgãos, nem famílias aflitas em busca de doadores compatíveis. Em breve, em vez de transplantes de órgãos, os hospitais farão transplantes de células retiradas do próprio paciente. Não há dúvida de que a terapia com células-tronco será a medicina do futuro.

Fonte: www.educacaopublica.rj.gov.br

Total de visualizações de página

 
Desenvolvido por Othon Fagundes