Os tecidos protetores, ou de revestimento, de uma traqueófita são a epiderme e o súber. A eficiência deles pode garantir a proteção da planta contra diversos agentes agressivos do meio.
É na folha que a epiderme possui notáveis especializações: sendo um órgão de face dupla, possui duas epidermes, a superior e a inferior.
As células epidérmicas secretam para o exterior substâncias impermeabilizantes, que formam uma película de revestimento denominada cutícula. O principal componente da cutícula é a cutina, um polímero feito de moléculas de ácidos graxos. Além de evitar a perda de água, a cutícula protege a planta contra infecções e traumas mecânicos.
Atenção! A troca de gases entre a planta e o meio ocorre através dos estômatos da epiderme e de uma estrutura chamada lenticelas presentes no súber.
As lenticelas são pequenas aberturas que facilitam o ingresso e a saída de gases nas raízes e caules suberificados. |
Os tricomas são geralmente estruturas especializadas contra a perda de água por excesso de transpiração, ocorrendo em planta de clima quente. Podem ser, no entanto, secretores, produzindo secreções oleosas, digestivas ou urticantes. As plantas carnívoras possuem tricomas “digestivos” e a urtiga, planta que provoca irritação da pele, possui tricomas urticantes.
Os acúleos, estruturas pontiagudas com função de proteção da planta contra predadores, são frequentemente confundido com espinhos, que são folhas ou ramos modificados. Os acúleos são fáceis de destacar e são provenientes da epiderme. Podem ser encontrados nas roseiras.
Hidatódios são estômatos modificados, especializados em eliminar excessos líquidos da planta. Os hidatódios geralmente presentes nas bordas das folhas, onde, pela manhã, é possível observar as gotas de líquido que eles eliminam, fenômeno conhecido como gutação.
O porte das traqueófitas só foi possível por adaptações que tornaram possível a sustentação do organismo vivo e a disponibilidade e transporte de água para todas as células.
- Colênquima anelar: Por toda a borda da célula um espessamento uniforme.
- Colênquima angular: Espessamento por todos os ângulos da célula.
- Colênquima lamelar: Nas bordas das células há maiores espessamentos tangenciais.
- Colênquima lacunar: espessamento nas paredes próximas ao espaço intercelular.
- Colênquima radial: células alongadas e paralelas, alocadas radialmente.
CARACTERÍSTICAS
TIPOS
1- Esclereídes ou esclerócitosCélulas curtas, espessadas, com numerosas pontoações. O tecido formado é muito rígido. A textura pétrea da pêra é devida à presença de inúmeros esclerócitos isodiamétricos na polpa.2- FibrasCélulas longas, com extremidades afiladas, lume reduzido e paredes secundárias espessas. Servem como de elemento de sustentação nas partes vegetais que não mais se alongam.Podem se originar do pró-câmbio, sendo chamadas fibras do floema ou xilema primários ou do câmbio, sendo denominadas fibras do xilema ou floema secundários; além disso, células do parênquima cortical, mesofilo e epiderme podem originar fibras.
O parênquima clorofiliano foliar pode ser, em geral de dois tipos:
- palisádico - constituído por células prismáticas e justapostos como uma paliçada, e
- lacunoso -constituído por células de forma irregular, que deixam espaços ou lacunas entre si.
A existência nas traqueófitas de aberturas epidérmicas reguláveis (os estômatos) que permitem as trocas gasosas e ao mesmo tempo ajudam a evitar perdas excessivas de vapor de água é um mecanismo adaptativo importante.
Inicialmente, ocorre a absorção de água e nutrientes minerais pela zona pilífera da raiz. Os diferentes tipos de íons são obtidos ativa ou passivamente e a água é absorvida por osmose.
Forma-se uma solução aquosa mineral, a seiva bruta ou seiva inorgânica. Essa solução caminha de célula a célula radicular até atingir os vasos do xilema (ou lenho) existentes no centro da raiz. A partir daí, o transporte dessa seiva ocorre integralmente dentro dos vasos lenhosos até as folhas. Lá chegando, os nutrientes e a água difundem-se até as células e são utilizados no processo da fotossíntese.
Vimos que as raízes absorvem água do solo através da região dos pelos absorventes ou zona pilífera. Desta, a água atravessa as células do córtex, endoderme e periciclo da raiz. Na endoderme o fluxo da água pode ser facilitado ela existência das chamadas células de passagem. A água atinge os vasos do xilema e, a partir desses vasos, atinge a folha. Na folha, ou ela é usada na fotossíntese ou é liberada na transpiração.
- A pressão da raiz – O movimento da água através da raiz é considerado como resultante de um mecanismo osmótico. A água que está no solo entra na célula do pêlo radicular, cuja concentração é maior que a da solução do solo. A célula radicular é menos concentrada que a célula cortical. Esta, por sua vez, é menos concentrada que a célula endodérmica e, assim por diante, até chegar ao vaso do xilema, cuja solução aquosa é mais concentrada de todas nesse nível. Assim, é como se a água fosse osmoticamente bombeada, até atingir os vasos do xilema.
- A sucção exercida pelas folhas – A hipótese mais aceita, atualmente, para o deslocamento da seiva do xilema é baseada na “sucção” de água que a copa exerce. Esta “sucção” está relacionada com os processos de transpiração e fotossíntese que ocorrem nas folhas. Para que essa “aspiração” seja eficiente, dois pré-requisitos são fundamentais: inexistência de ar nos vasos de xilema e uma força de coesão entre as moléculas de água. A coesão entre as moléculas de água faz com que elas permaneçam unidas umas às outras e suportem forças extraordinárias, como o próprio peso da coluna líquida no interior dos vasos, que poderiam levá-las a separar-se. A existência de ar nos vasos do xilema romperia essa união e levaria à formação de bolhas que impediriam a ascensão da seiva lenhosa. As paredes dos vasos lenhosos igualmente atraem as moléculas de água e essa adesão, juntamente com a coesão, são fatores fundamentais na manutenção de uma nova coluna contínua de água no interior do vaso.
- A transpiração e a fotossíntese removem constantemente água da planta. Essa extração gera uma tensão entre as moléculas de água já que a coesão entre elas impede que se separem. A parede do vaso também é tracionada devido à adesão existente entre ela e as moléculas de água. Para que se mantenha a continuidade da coluna líquida, a reposição das moléculas de água retiradas da copa deve ser feita pela raiz, que, assim, abastece constantemente o xilema.
- O efeito da capilaridade na condução da seiva – Os vasos lenhosos são muito delgados, possuem diâmetro capilar. Assim, a ascensão do xilema ocorre, em parte, por capilaridade. No entanto, por esse mecanismo, a água atinge alturas bem inferiores a 1 metro e, isoladamente, esse fato é insuficiente para explicar a subida da seiva inorgânica.
A seiva orgânica, elaborada no parênquima das folhas, é lançada nos tubos crivados do floema e conduzida a todas as partes da planta que não são auto-suficientes. O transporte é orientado principalmente para a raiz, podendo haver algum movimento em direção ao ápice do caule e folhas em desenvolvimento. De modo geral, os materiais orgânicos são translocados para órgãos consumidores e de reserva, podendo haver inversão do movimento (isto é, dos órgãos de reserva para regiões em crescimento), quando necessário.
A compreensão dessa hipótese fica mais fácil acompanhando-se o modelo sugerido por Münch para a sua explicação.
- Tubo de vidro 1 corresponde ao floema e o tubo de vidro 2 ao xilema;
- Osmômetro 1 corresponde a uma célula do parênquima foliar e o osmômetro 2, a uma célula da raiz;
- Frasco A representa a folha, enquanto o frasco B representa a raiz;
- As células do parênquima foliar realizam fotossíntese e produzem glicose. A concentração dessas células aumenta, o que faz com que absorvam água do xilema das nervuras. O excesso de água absorvida é deslocado para o floema, arrastando moléculas de açúcar em direção aos centros consumidores ou de reserva.
Raízes e caules jovens, cortados transversalmente, mostram que são formados por uma reunião de tecidos. A disposição desses tecidos é específica em cada órgão e constitui uma estrutura interna primária típica de cada um deles. Uma estrutura secundária, mais complexa, pode ser vista quando ocorre um aumento no diâmetro do caule e da raiz.
Após crescerem as células iniciam a sua diferenciação. Na região mais interna, por exemplo, terá início a diferenciação dos tecidos condutores, enquanto na região mais externa diferenciam-se parênquimas e tecidos de revestimento.
O crescimento secundário em raízes, bem como nos caules, consiste na formação de tecidos vasculares secundários a partir do câmbio vascular e de uma periderme originada no felogênio (câmbio de casca). O câmbio vascular se inicia por divisões das células do procâmbio, que permanecem meristemáticas e estão localizadas entre o xilema e floema primários. Logo a seguir, as células do periciclo também se dividem e as células-irmãs internas, resultantes desta divisão, contribuem para formar o câmbio vascular. Um cilindro completo de câmbio da casca (felogênio), que surge na parte externa do periciclo proliferado, produz súber para o lado externo e felogênio para o lado interno. Estes três tecidos formados: súber, felogênio e feloderme constituem a periderme (RAVEN et al., 2007).
Logo abaixo da zona meristemática apical as células iniciam o processo de diferenciação celular, que leva ao aparecimento dos diversos tecidos que compõem o caule.
A radícula é a primeira estrutura a imergir; a seguir, exterioriza-se o caulículo e a plântula inicia um longo processo que culminará no vegetal adulto.
- O crescimento corresponde a um crescimento irreversível no tamanho de um vegetal, e se dá a partir do acréscimo de células resultantes das divisões mitóticas, além do tamanho individual de cada célula. De modo geral, o crescimento também envolve aumento do volume e da massa do vegetal. O crescimento envolve parâmetros quantitativos mensuráveis (tamanho, massa e volume).
- O desenvolvimento consiste no surgimento dos diferentes tipos celulares e dos diversos tecidos componentes dos órgão vegetais. É certamente um fenômeno relacionado ao processo de diferenciação celular. O desenvolvimento envolve aspectos quantitativos, relacionados ao aumento da complexidade do vegetal.
As células dos tecidos diferenciados, ainda que não tenham morrido durante a diferenciação (como o súber, o xilema, por exemplo), perdem a capacidade de se multiplicar por mitose. As células meristemáticas se multiplicam e se diferenciam, originando os diversos tecidos permanentes da planta, cujas células não mais se dividem.
Meristema primários
Em certos locais das plantas, como nos ápices da raiz e do caule, existem tecidos meristemáticos que descendem diretamente das primeiras células embrionários, presentes na semente. Esses são os meristemas primários.
O caule cresce em comprimento graças à atividade de um meristema primário presente em seu ápice, o meristema apical caulinar. Já o meristema responsável pelo crescimento em comprimento da raiz não é terminal, mas está protegido sob um capuz celular chamado de coifa. Por isso é denominadomeristema subapical radicular. |
Exercícios sobre tecidos vegetais
1) Os meristemas vegetais, quando examinados ao microscópio, apresentam abundância de:
a) reservas
b) figuras de mitose
c) figuras de meiose
d) tecido lenhoso
e) tecido vascular
2) (UFCE) Nas células meristemáticas, é comum a observação de:
a) grandes vacúolos
b) citoplasma parietal
c) figuras mitóticas
d) divisão meiótica
e) núcleo periférico
3) (UFBA) Qual dos seguintes conjuntos de características é comum a todos os tecidos de sustentação dos vegetais?
a) células mortas, localização periférica e presença de lignina;
b) células em atividade, localização interna e parede reforçada com substâncias diversas;
c) células mortas ou em atividade, localização variada e parede reforçada com substâncias diversas;
d) células alongadas, localização periférica e presença de lignina ou de celulose;
e) células alongadas, mortas, localização interna e parede reforçada com substâncias diversas.
4) (UFSE) A conhecida cortiça, de tão larga aplicação na fabricação de rolhas, é retirada de árvores que apresentam abundância do tecido denominado:
a) súber
b) lenho
c) colênquima
d) esclerênquima
e) líber
5) Quais são as estruturas vegetais relacionadas com as trocas gasosas nos vegetais?
6) (PUC) O câmbio e o felogênio são duas formações vegetais constituídas por tecido:
a) meristemático de crescimento;
b) meristemático, de crescimento em comprimento, existente na raiz;
c) diferenciado, de crescimento, existente no caule e raiz;
d) diferenciado para condução, existente nas angiospermas;
e) diferenciado para promover absorção de água, existente nas raízes.
7) (UFRJ 2006) Tal como acontece com os animais, os vegetais superiores também apresentam células com uma organização estrutural formando tecidos. Existe uma certa analogia entre alguns tecidos vegetais e determinados tecidos animais. Esta analogia existe entre:
a) o esclerênquima encontrado nos vegetais e tecido ósseo dos animais.
b) o tecido suberoso dos vegetais e o tecido sanguíneo dos animais.
c) os vasos liberianos dos vegetais e o tecido ósseo dos animais.
d) os canais laticíferos dos vegetais e a epiderme dos animais.
e) o colênquima dos vegetais e o tecido muscular liso dos animais.
8) (UFV) Em relação aos tecidos vegetais:
a) qual a função dos meristemas primários e onde se localizam?
b) qual a função dos meristemas secundários?
c) dê o nome do tecido localizado nas folhas e nos caules jovens, caracterizados por células ricamente clorofiladas com função fotossintética.
9) (FUVEST) O que são meristemas e quais seus principais tipos?
11) (FURG) Considerando os tecidos vegetais, relacione a coluna 1 com a coluna 2.
Coluna 1
I - Tecido que garante a flutuação de plantas aquáticas.
II - Tecido que garante a sobrevivência de plantas em ambientes secos como desertos.
III - Tecido responsável pelo crescimento em comprimento de caules e raízes.
IV - Tecido responsável pelo crescimento em espessura dos caules.
V - Tecido responsável pela fotossíntese.
VI - Tecido de características mecânicas que serve para a sustentação da planta.
Coluna 2
( ) Câmbio
( ) Meristema apical
( ) Esclerênquima
( ) Parênquima clorofiliano
( ) Parênquima aerífero
( ) Parênquima aqüífero
Assinale a alternativa com a seqüência correta
a) I, II, III, V, VI e IV.
b) III, I, II, IV, V e VI.
c) III, IV, VI, I, II e V.
d) IV, VI, III, V, I e II.
e) IV, III, VI, V, I e II.
12) As células epidérmicas das raízes (pêlos absorventes) absorvem água do solo, normalmente, quando:
a) a concentração de sais das células for menor que a concentração de sais do solo.
b) a concentração de sais das células for maior que a concentração de sais do solo.
c) a concentração de sais das células for igual à concentração de sais do solo.
d) a concentração de água das células for maior que a concentração de água do solo.
e) a concentração de água das células for igual à concentração de água do solo.
13) (Cesgranrio - RJ) Nas plantas, as estruturas especializadas para as trocas de gases entre a planta e o exterior são:
a) os estômatos e as lenticelas.
b) o floema e os estômatos.
c) as lenticelas e o colênquima.
d) o esclerênquima e o xilema.
e) o súber e o câmbio.
14) (Fuvest-SP) O xilema ou lenho é responsável:
a) pela absorção de água e sais minerais.
b) pela condução de substâncias orgânicas liberadas pelo órgão de reserva.
c) pelo transporte e pela distribuição de água e nutrientes minerais.
d) pelo transporte e pela distribuição de alimentos orgânicos.
e) pelo transporte de água e alimentos orgânicos sintetizados na folha.
15) (MACK-SP) Alguns tecidos vegetais são constituídos por células mortas, não como uma medida casual, mas como ponto final de um processo de diferenciação celular tão importante como qualquer outra função desempenhada por qualquer outra célula viva. São exemplos de tecidos vegetais constituídos por células mortas:
a) colênquima e parênquima paliçádico.
b) súber e parênquima paliçádico.
c) esclerênquima e colênquima.
d) súber e colênquima.
e) súber e esclerênquima.
16) Quais os principais componentes do xilema e qual a sua função?
17) (UFV) Embora não sejam essenciais como nutriente, as fibras têm papel importante na dieta. Elas estimulam os movimentos peristálticos, reduzindo o tempo de contato de substâncias potencialmente prejudiciais no intestino, evitando assim muitos distúrbios como diverticulose e prisão de ventre. A sua deficiência na dieta pode causar também problemas mais graves como doenças coronarianas, câncer no intestino e obesidade. Em relação às fibras, resolva os itens abaixo.
a) Cite um tecido vegetal rico em fibras.
b) Além da alimentação, cite uma importância econômica de utilização dessas fibras.
18) (UFU-MG) Comparando-se os tecidos vegetais pede-se uma semelhança e uma diferença entre cada um dos pares abaixo:
a) Colênquima e esclerênquima.
b) Meristema primário e meristema secundário.
19) (FUVEST) Muitas fibras do esclerênquima são usadas industrialmente como matéria-prima para a fabricação do cânhamo, da juta e do linho.
a) Cite duas características do esclerênquima.
b) Identifique a principal função desse tecido vegetal.
20) (FUVEST-SP) O esquema representa um corte transversal de um tronco de árvore.
21) (UFPR) Tal como sucede com os animais, também as plantas desenvolvidas apresentam as suas células com uma organização estrutural formando tecidos. Os tecidos vegetais se distribuem em dois grandes grupos: tecidos de formação e tecidos permanentes. Com relação aos tecidos vegetais, assinale as proposições CORRETAS.
(01) Os meristemas e a epiderme são exemplos de tecidos de formação.
(02) O xilema e o colênquima são tecidos permanentes.
(04) Os meristemas são tecidos embrionários dos quais resultam todos os demais tecidos vegetais.
(08) Os parênquimas, quando dotados de células ricamente clorofiladas, são tecidos de síntese.
(16) Os tecidos de arejamento se destinam às trocas gasosas e de sais minerais entre a planta e o meio ambiente, sendo o floema um de seus principais exemplos.
(32) As bolsas secretoras, presentes em nectários, juntamente com os canais laticíferos, existentes nas seringueiras, são exemplos de tecidos de secreção.
Soma ( )
22) (UFPR) Assinale as proposições que apresentam CORRETAMENTE os tipos de raízes, suas características e exemplos de vegetais que as possuem.
(01) Raízes fasciculadas possuem um eixo central mais desenvolvido e estão presentes nos vegetais chamados dicotiledôneas, como o milho e a grama.
(02) As raízes respiratórias, presentes nos mangues, promovem uma maior absorção de oxigênio.
(04) Raízes tabulares aumentam a estabilidade de árvores frondosas, como as figueiras.
(08) As raízes sugadoras dos vegetais parasitas, como o cipó-chumbo, penetram nos caules de plantas hospedeiras, sugando a seiva de que necessitam.
(16) A raiz tuberosa, presente na cenoura e beterraba, acumula substâncias nutritivas.
Soma ( )
23) (UNESP) São exemplos de tecidos de sustentação, condução e proteção, respectivamente:
a) súber - traqueídeos - esclerênquima.
b) epiderme - esclerênquima - súber.
c) súber - colênquima - fibras.
d) esclerênquima - traqueídeos - súber.
e) colênquima - xilema - traqueídeos.
24) (UERJ) Até cerca de 405 milhões de anos atrás, parece que a vida esteve limitada à água. A existência terrestre trouxe consigo sérios problemas como, por exemplo, o risco de dessecamento. Características que permitissem aos vegetais a redução de perda d'água em suas partes aéreas foram selecionadas positivamente pelo ambiente por facilitar a adaptação.
A economia de água é permitida pelo seguinte tecido vegetal:
a) súber
b) floema
c) colênquima
d) parênquima de assimilação.
25) (UFRRJ) Sobre o esquema a seguir são feitas algumas afirmativas:
Gabarito: