Tecnologia do Blogger.

17 de mar. de 2010

FEBREAMARELA

Doença infecciosa para a qual já existe uma vacina disponível, a febre amarela ainda hoje atinge populações na América e na África. Causada por um gênero de vírus conhecido como flavivírus, a enfermidade apresenta duas formas de expressão, a urbana e a silvestre. No Brasil, a forma urbana encontra-se erradicada desde 1942. No entanto, a febre amarela silvestre não é erradicável, já que possui uma circulação natural entre primatas das florestas tropicais.

A doença é geralmente adquirida quando uma pessoa não vacinada é picada pelo mosquito transmissor em áreas silvestres, como regiões de cerrado e florestas. Por isso, vacinação é uma importante aliada no seu combate. De acordo com dados da Fundação Nacional de Saúde (Funasa), aproximadamente 60 milhões de pessoas já estavam vacinadas no Brasil em 2001. Nesse ano, o país registrou 41 casos da doença (31 ocorridos em um surto ocorrido em Minas Gerais) e 22 mortes.

A transmissão da enfermidade não é feita diretamente de uma pessoa para outra. Para isso, é necessário que o mosquito pique uma pessoa infectada e, após o vírus ter se multiplicado (nove a 12 dias), pique um indivíduo que ainda não teve a doença e não tenha sido vacinado. O vírus e a evolução clínica da doença são idênticos para os casos de febre amarela urbana e de febre amarela silvestre, diferenciando-se apenas o transmissor da doença.

A febre amarela silvestre ocorre, principalmente, por intermédio de mosquitos do gênero Haemagogus.

Uma vez infectado em área silvestre, a pessoa pode, ao retornar, servir como fonte de infecção para o Aedes aegypti (também vetor do dengue), principal transmissor da febre amarela urbana. O Aedes aegypti prolifera-se nas proximidades de habitações em recipientes que acumulam água limpa e parada, como vasos de plantas, pneus velhos, cisternas etc.

Os sintomas da febre amarela, em geral, aparecem entre o terceiro e o sexto dia após a picada do mosquito. As primeiras manifestações são febre alta, mal estar, dor de cabeça, dor muscular, cansaço e calafrios. Podem, ainda, surgir náuseas, vômitos e diarréia. Após três ou quatro dias, a maioria dos doentes (85%) recupera-se completamente e fica permanentemente imunizado contra a doença.

Cerca de 15% dos doentes infectados com febre amarela apresentam sintomas graves, que podem levar à morte em 50% dos casos. Além da febre, a pessoa pode apresentar dores abdominais, diarréia e vômitos. Surgem icterícia (olhos amarelados, semelhante à hepatite), manifestações hemorrágicas (equimoses, sangramentos no nariz e gengivas) e ocorre o funcionamento inadequado de órgãos vitais como fígado e rins. Como conseqüência, pode haver diminuição do volume urinário até a anúria total (ausência de urina na bexiga) e o coma. As pessoas que sobrevivem recuperam-se totalmente.

Não existe tratamento específico para febre amarela, sendo ele apenas sintomático. A vacina é uma grande aliada para se evitar a ocorrência da doença. O indivíduo deve tomar a primeira dose a partir dos 12 meses de idade e receber um reforço a cada dez anos. Nas áreas de maior risco, como a Amazônia, a vacinação pode ser iniciada a partir dos seis meses.

A substância não produz efeitos colaterais, mas algumas pessoas manifestam dor local, febre, dor muscular e dor de cabeça por um ou dois dias. A vacina encontra-se disponível nas unidades de saúde das áreas endêmicas e nos serviços de portos, aeroportos e fronteiras de todos os estados. O Brasil exige o Certificado Internacional de Vacinação contra febre amarela, para a concessão de vistos consulares e entrada, de viajantes provenientes de alguns países da África, da América Central e do Sul.

Fonte: www.fiocruz.br

Alergias RespiratóriasPoeira doméstica, fungos, pêlos de animais, fumaça e odores fortes, como cola de sapateiro e perfumes, são alguns entre tantos outros diferentes agentes externos, denominados alérgenos, que provocam reações alérgicas do nosso organismo.

Desta forma, podem ocorrer diversas manifestações, comumente apresentadas como rinite ou asma brônquica. RiniteA rinite é um processo irritativo das vias nasais, caracterizando-se por espirro, produção excessiva de muco, coceira no céu da boca e congestão nasal.

Asma ou BronquiteEsta reação aos alérgenos causa obstrução e dificulta a passagem do ar pelas vias respiratórias, manifestando-se sob forma de chiados no peito e falta de ar.

Além da alergia respiratória, mudanças repentinas de temperatura, umidade, desgaste emocional e processos inflamatórios, como gripes ou resfriados, também contribuem para desencadear uma crise alérgica. Pessoas com alergias respiratórias devem ter sua atenção redobrada

• Mantenha o ambiente livre de poeira. Na falta de um aspirador, faça a limpeza com um pano úmido.

• Para sua casa, prefira pisos lisos, que acumulam pouca poeira. Evite cortinas e tapetes.

• Prefira travesseiros de espuma aos de penas e edredons no lugar de mantas ou cobertores de lã. São recomendáveis colchas e cobertores antialérgicos. Coloque revestimento plástico em almofadas e travesseiros.

• Evite usar talcos, perfumes e o contato com objetos de pelúcia, animais de pêlo epenas.

• Não permaneça em ambientes com cheiro de tinta, cola, materiais de limpeza ou qualquer substância com odores ativos.

AFECÇÕES DO PULMÃO
Tuberculose PulmonarCausada por um microorganismo denominado Bacilo de Koch, a tuberculose pulmonar atinge principalmente pessoas debilitadas, com deficiência no sistema de defesa orgânica.

Pessoas de vida e alimentação irregulares, usuários de bebidas alcoólicas e portadores do vírus da AIDS (HIV) correm um risco maior de contrair tuberculose. Importante: No caso de confirmação do diagnóstico da tuberculose, os indivíduos que mantêm contato direto e constante com o portador deverão se submeter a uma avaliação médica. Enfisema Pulmonar

O hábito de fumar é a principal causa do enfisema pulmonar. A doença está associada a estados gripais, caracterizando-se por pneumonias freqüentes e falta de ar constante, que prejudicam o desempenho físico. A diminuição da capacidade respiratória dos pulmões atinge com mais freqüência as pessoas idosas, exigindo mais atenção.

PneumoniaA pneumonia, um processo inflamatório dos pulmões, pode ser causada por vários tipos de microorganismos, havendo tratamento específico para cada um deles. Falta de ar, fraqueza, febre alta (no caso de pneumonia por bactérias) e diminuição da capacidade para realizar atividades físicas são sintomas característicos da doença.

OS CUIDADOS QUE VOCÊ DEVE TER
• Inclua proteínas na alimentação, em quantidades equilibradas: verduras, legumes e frutas, procurando sempre estabelecer horas certas para as refeições.

• Consuma frutas ricas em vitamina C, tais como laranja, limão, melão e abacaxi, entre outras, além de verduras como couve, alface e agrião.

• Beba sempre bastante líquido.• Evite bebidas muito geladas

.• Não tome bebidas alcoólicas.• Mantenha sua casa sempre bem ventilada, principalmente os quartos de dormir.• Evite os banhos muito quentes.

• Leve sempre um guarda-chuva e agasalho para os dias chuvosos e frios.

• Procure amamentar seu filho pelo menos nos primeiros seis meses de vida. O aleitamento é fundamental para prevenir doenças, inclusive as respiratórias. É através do leite que a mãe passa seus anticorpos para o bebê, protegendo-o contra infecções e garantindo seu desenvolvimento.

• Vacine seu filho. A vacinação completa até o primeiro ano de vida previne a criança de coqueluche, tuberculose e outras infecções respiratórias graves.

• Pratique esportes ao ar livre. Correr, nadar ou caminhar aumentam a capacidade respiratória. Mas não esqueça de consultar um médico para uma pré-avaliação das suas condições físicas.

• Em atividades profissionais que possam afetar seu sistema respiratório utilize os equipamentos de proteção fornecidos por sua empresa.

• Cuidado com a fadiga. O sono repousante e reparador evita doença.

• Evite aglomerações e ambientes fechados, onde a contaminação é mais freqüente.

• Não fume. Os efeitos do cigarro são os mesmos para as pessoas que convivem com os fumantes e pioram a situação em ambientes fechados. Filhos de pais fumantes apresentam cinco vezes mais resfriados que os de não fumantes.

• Prefira lenços descartáveis, em caso de gripes ou resfriados.

Fonte: www.drmarcoaureliopaiva.com.br

DOENÇआश्र्श्रीआटीआश्र

São as infecções virais mais comuns das vias respiratórias. Caracterizam-se por coriza, tosse com expectoração de catarro, dor de cabeça, sensação de mal-estar, irritação da garganta, febre, rouquidão, dores musculares e sudorese. A contaminação pode ocorrer através da saliva, pela fala, pela tosse ou pelo espirro. Para evitar contrair gripes e resfriados é importante lavar bem as mãos, cobrir a boca quando tossir e não espirrar próximo a outras pessoas.

Nos casos de gripe, geralmente ocorre um cansaço extremo, febre por dois ou três dias, dores no corpo, de cabeça e de garganta, além de coriza. A melhora ocorre depois de três ou cinco dias. É possível prevenir a gripe com uma alimentação saudável, bebendo muita água, fazendo exercícios e dormindo bem.

Já o resfriado ataca principalmente o nariz e a garganta, causando espirros, coriza e tosse. A recuperação acontece em dois ou três dias. Para prevenir o resfriado procure evitar lugares fechados, fazer exercícios regulares, ter uma boa alimentação, descansar e ingerir bastante líquido.

Tosse


É um meio que o organismo utiliza para limpar o aparelho respiratório e expulsar o catarro (muco com pus) e os microorganismos da garganta ou dos pulmões. Por isso, quando a tosse produz catarro, não tome nenhum medicamento, por conta própria, beba bastante água, evite o fumo e procure orientação médica para soltar e expulsá-lo.

O melhor tratamento continua sendo a prevenção: melhorar as defesas do corpo com alimentação saudável, rica em verduras, frutas e legumes, tomar bastante água, já que o pulmão fabrica por dia 800 ml de secreção que é eliminada em forma de vapor. É importante, também, manter a casa e o ambiente livres de poeira e sujeira, principalmente para evitar o agravamento de doenças simples, como a rinite e a sinusite.

Rinite
É caracterizada por espirros, coceira no nariz, coriza e nariz entupido. A crise pode ser causada por poeira, pólen, mofo ou pêlo de animal, entre outros agentes causadores dos sintomas.

Sinusite
Uma inflamação dos seios da face. Ocasiona dor no rosto acima e abaixo dos olhos, muco espesso ou pus no nariz, às vezes apresenta com mau cheiro, nariz entupido e febre.

Fonte: www.herbarium.net

16 de mar. de 2010

gorduras

Trans-saturadas

Presentes em batata-frita, margarina e biscoitos amanteigados. Não trás nenhum benefício e aumenta o colesterol e risco de doença cardíaca. Evite-os. Gorduras Saturadas Presentes em carnes gordas, laticínios e coco. Alguns tipos de gordura saturada encontradas em bife e manteiga podem entupir suas artérias. Limite-as a menos de 10% do total de sua ingestão de calorias.

Omega 6

Presente em óleos vegetais, sementes e nozes. Pode reduzir o LDL e o colesterol total, mas alto consumo pode abaixar o do benéfico colesterol HDL. Limite a 10% do total de sua ingestão de calorias.

Omega 3

Presente em peixes gordurosos, óleos vegetais e nozes. Abaixa o nível de triglicérides e o colesterol total. Alto consumo pode retardar a coagulação sangüínea. Gorduras Mono-insaturadas Presentes em azeite de oliva, abacate, amendoim. Abaixa o LDL e o colesterol total. Ingira a maior parte de gorduras desse tipo. Fonte pesquisada : Runner's World Maga

gorduras

Gordura saturada é a gordura que consiste de triacilglicerídios que contém somente ácidos graxos saturados. Apresenta uma ligação simples entre carbonos e é normalmente encontrada em estado sólido.

É a gordura produzida por animais, já as plantas produzem as gorduras insaturadas, que são, a princípio liquidas. É a principal gordura responsável pela aterosclerose. Eleva o nível de produção de LDL gerando assim, placas de ateroma, aumentando as chances de acontecer ataque cardíaco e derrame cerebral. Elas são encontradas em carnes, frangos, galinhas e etc.


A diferença básica entre esses dois produtos é que a margarina é de origem vegetal, enquanto a manteiga tem origem animal.

Margarinas e manteigas têm gorduras. As margarinas têm uma quantidade maior de gorduras insaturadas, benéficas ao organismo, pois diminuem o colesterol, do que as manteigas. Já as manteigas têm uma quantidade bem maior de gordura saturada, que pode causar aumento do colesterol.

Outra diferença é que a margarina, por ser de origem vegetal, não tem nenhum colesterol, enquanto as manteigas têm uma altíssima taxa de colesterol, que é necessário para o organismo, mas que em altas quantidades pode provocar a arterioesclerose (entupimento do vasos) e provocar doenças do sistema circulatório

gorduratrans

As gorduras trans são um tipo especial de ácido graxo, formado a partir de ácidos graxos insaturados. Em outros termos, são um tipo específico de gordura formada por um processo de hidrogenação, que seja natural (ocorrido no rúmen de animais artiodátilos) ou artificial.

Seu nome é bastante mencionado devido à sua nocividade à saúde humana. Estão presentes principalmente nos alimentos industrializados com o comum logrativo "gordura vegetal".

São considerados especiais devido à sua conformação estrutural. Nos ácidos graxos cis, que é como geralmente são encontrados os ácidos graxos na natureza, os átomos de menor peso molecular encontram-se paralelos, e nos ácidos graxos trans, os átomos de menor peso molecular estão dispostos na forma diagonal.

O ângulo das duplas ligações na posição trans é menor que em seu isômero cis e sua cadeia de carboidratos é mais linear, resultando em uma molécula mais rígida, com propriedades físicas diferentes, inclusive no que se refere à sua estabilidade termodinâmica.

Os ácidos graxos trans não são sintetizados no organismo humano, sendo que são resultantes de um processo chamado de hidrogenação. O objetivo desse processo é adicionar átomos de hidrogênio nos locais das duplas ligações, eliminando-as. Mas a hidrogenação é geralmente parcial, ou seja, há a conservação de algumas duplas ligações da molécula original e estas podem formar isômeros, mudando da configuração cis para trans.

Existem dois tipos de hidrogenação:

  • A biohidrogenação, que ocorre quando os ácidos graxos ingeridos por ruminantes são parcialmente hidrogenados por sistemas enzimáticos da flora microbiana intestinal destes animais;
  • A hidrogenação industrial. Nesse processo são misturados hidrogênio gasoso, óleos vegetais polinsaturados, um catalisador que geralmente é o Ni, sob pressão e temperatura apropriadas. Esse processo vai resultar em ácidos graxos com ponto de fusão mais alto, devido a orientação linear nas moléculas trans e ao aumento no índice de saturação, e maior estabilidade ao processo de oxidação lipídica

15 de mar. de 2010

nervoso3

Como Funciona o Sistema Nervoso

Cérebro

O sistema nervoso detecta estímulos externos e internos, tanto físicos quanto químicos, e desencadeia as respostas musculares e glandulares. Assim, é responsável pela integração do organismo com o seu meio ambiente.

Ele é formado, basicamente, por células nervosas, que se interconectam de forma específica e precisa, formando os chamados circuitos neurais. Através desses circuitos, o organismo é capaz de produzir respostas estereotipadas que constituem os comportamentos fixos e invariantes (por exemplo, os reflexos), ou então, produzir comportamentos variáveis em maior ou menor grau.

Todo ser vivo dotado de um sistema nervoso é capaz de modificar o seu comportamento em função de experiências passadas. Essa modificação comportamental é chamada de aprendizado, e ocorre no sistema nervodo através da propriedade chamada plasticidade cerebral.

O Neurônio

A célula nervosa, ou, simplesmente, neurônio, é o principal componente do sistema nervoso. Considerada sua unidade anatomo-fisiológica, estima-se que no cérebro humano existam aproximadamente 15 bilhões destas células, responsável por todas as funções do sistema.

Existem diversos tipos de neurônios, com diferentes funções dependendo da sua localização e estrutura morfológica, mas em geral constituem-se dos mesmos componentes básicos:

Neurônio
Clique para Ampliar

o corpo do neurônio (soma) constituído de núcleo e pericário, que dá suporte metabólico à toda célula

o axônio (fibra nervosa) prolongamento único e grande que aparece no soma. É responsável pela condução do impulso nervoso para o próximo neurônio, podendo ser revestido ou não por mielina (bainha axonial) , célula glial especializada, e

os dendritos que são prolongamentos menores em forma de ramificações (arborizações terminais) que emergem do pericário e do final do axônio, sendo, na maioria das vezes, responsáveis pela comunicação entre os neurônios através das sinapses. Basicamente, cada neurônio, possui uma região receptiva e outra efetora em relação a condução da sinalização.

A Sinapse

É a estrutura dos neurônios através da qual ocorrem os processos de comunicação entre os mesmos, ou seja, onde ocorre a passagem do sinal neural (transmissão sináptica) através de processos eletroquímicos específicos, isso graças a certas características particulares da sua constituição.

Sinapse

Em uma sinapse os neurônios não se tocam, permanecendo um espaço entre eles denominado fenda sináptica, onde um neurônio pré-sináptico liga-se a um outro denominado neurônio pós-sináptico. O sinal nervoso (impulso), que vem através do axônio da célula pré-sináptica chega em sua extremidade e provoca na fenda a liberação de neurotransmissores depositados em bolsas chamadas de vesículas sinápticas. Este elemento químico se liga quimicamente a receptores específicos no neurônio pós-sináptico, dando continuidade à propagação do sinal.

Um neurônio pode receber ou enviar entre 1.000 a 100.000 conexões sinápticas em relação a outros neurônios, dependendo de seu tipo e localização no sistema nervoso. O número e a qualidade das sinapses em um neurônio pode variar, entre outros fatores, pela experiência e aprendizagem, demonstrando a capacidade plástica do SN.

Organização Funcional

Funcionalmente, pode-se afirmar que o SN é composto por neurônios sensoriais, motores e de associação. As informações provenientes dos receptores sensoriais aferem ao Sistema Nervoso Central (SNC), onde são integradas (codificação/comparação/armazenagem/decisão) por neurônios de associação ou interneurônios, e enviam uma resposta que efere a algum orgão efetor (músculo, glândula). Kandel sugere que o "movimento voluntário é controlado por complexo circuito neural no cérebro interconectando os sistemas sensorial e motor. (...) o sistema motivacional". As respostas desencadeadas pelo SNC são tão mais complexas quanto mais exigentes forem os estímulos ambientais (aferentes).

Para tanto o cérebro necessita de uma intrincada rede de circuitos neurais conectando suas principais áreas sensoriais e motoras, ou seja, grandes concentrações de neurônios capazes de armazenar, interpretar e emitir respostas eficientes a qualquer estímulo, tendo também a capacidade de, a todo instante, em decorrência de novas informações, provocar modificações e rearranjos em suas conexões sinápticas, possibilitando novas aprendizagens.

Áreas Associativas do Córtex

Todo o córtex cerebral é organizado em áreas funcionais que assumem tarefas receptivas, integrativas ou motoras no comportamento. São responsáveis por todos os nossos atos conscientes, nossos pensamentos e pela capacidade de respondermos a qualquer estímulo ambiental de forma voluntária.

Existe um verdadeiro mapa cortical com divisões precisas a nível anatomo-funcional, mas que todo ele está praticamente sempre mais ou menos ativado dependendo da atividade que o cérebro desempenha, visto a interdependência e a necessidade de integração constante de suas informações frente aos mais simples comportamentos.

Sistema Nervoso
Clique para Ampliar

Fonte: www.cerebromente.org.br

Sistema Nervoso


Todos os seres vivos têm a capacidade de responder a alterações do meio, através de modificações do seu estado ou de suas atividades.

Estas alterações do meio são chamadas de estímulo, e estes podem ser luminosos, térmicos, elétricos, sonoros, etc...

O Sistema Nervoso tem por função perceber os estímulos, transmiti-los a diversas partes do corpo e efetuar respostas.

Sistema Nervoso Central

Constituído do encéfalo e da medula espinhal.

Função

Codificar os estímulos.

Sistema Nervoso Periférico

Constituído dos nervos cranianos e espinhais.

Função

Captar estímulos e transmitir respostas.

Sistema Nervoso Autônomo

Constituído do Sistema Simpático e Parassimpático.

Função

Coordenar as funções dos órgãos internos.

Neurônio é a unidade celular do Sistema Nervoso.

Possuem formas variadas, mas todos exibem corpo celular, dendritos e axônio.

Os axônios são envolvidos por mielina cuja função é diminuir a perda de energia durante o impulso nervoso.

Condução do Impulso Nervoso

Todas as células do nosso organismo apresentam um potencial elétrico através da sua membrana. Nas condições de repouso , esse potencial é negativo no interior da célula.

Quando um sinal é transmitido ao longo da fibra nervosa, o potencial da membrana passa por uma série de variações, positivo e negativo. Esta variação súbita é chamada de potencial de ação e também de impulso nervoso.

O axônio é capaz de conduzir impulsos nervosos em ambos sentidos ao longo de seu comprimento. Estes impulsos caminham a grandes velocidades 100m/s.

Os neurônios são divididos em 2 grupos. Os aferentes ou sensitivos que captam os estímulos e conduzem para o S.N.Central, e os eferentes ou motores que conduzem a resposta.

Os neurônios se comunicam entre si e com os órgãos efetores (músculos e glândulas) através de sinapses. Não há contato físico, mas há transmissão química.

Fonte: webmap.vilabol.uol.com.br

nervoso2

O sistema nervoso é responsável pelo ajustamento do organismo ao ambiente. Sua função é perceber e identificar as condições ambientais externas, bem como as condições reinantes dentro do próprio corpo e elaborar respostas que adaptem a essas condições.

A unidade básica do sistema nervoso é a célula nervosa, denominada neurônio, que é uma célula extremamente estimulável; é capaz de perceber as mínimas variações que ocorrem em torno de si, reagindo com uma alteração elétrica que percorre sua membrana. Essa alteração elétrica é o impulso nervoso.

As células nervosas estabelecem conexões entre si de tal maneira que um neurônio pode transmitir a outros os estímulos recebidos do ambiente, gerando uma reação em cadeia.

Neurônios: células nervosas

Um neurônio típico apresenta três partes distintas: corpo celular, dentritos e axônio.

No corpo celular, a parte mais volumosa da célula nervosa, se localiza o núcleo e a maioria das estruturas citoplasmáticas.
Os dentritos (do grego dendron, árvore) são prolongamentos finos e geralmente ramificados que conduzem os estímulos captados do ambiente ou de outras células em direção ao corpo celular.

O axônio é um prolongamento fino, geralmente mais longo que os dentritos, cuja função é transmitir para outras células os impulsos nervosos provenientes do corpo celular.

Os corpos celulares dos neurônios estão concentrados no sistema nervoso central e também em pequenas estruturas globosas espalhadas pelo corpo, os gânglios nervosos. Os dentritos e o axônio, genericamente chamados fibras nervosas, estendem-se por todo o corpo, conectando os corpos celulares dos neurônios entre si e às células sensoriais, musculares e glandulares.

Células Glia

Além dos neurônios, o sistema nervoso apresenta-se constituído pelas células glia, ou células gliais, cuja função é dar sustentação aos neurônios e auxiliar o seu funcionamento. As células da glia constituem cerca de metade do volume do nosso encéfalo. Há diversos tipos de células gliais. Os astrócitos, por exemplo, dispõem-se ao longo dos capilares sanguíneos do encéfalo, controlando a passagem de substâncias do sangue para as células do sistema nervoso. Os oligodendrócitos e as células de Schwann enrolam-se sobre os axônios de certos neurônios, formando envoltórios isolantes.

Impulso Nervoso

A despolarização e a repolarização de um neurônio ocorrem devido as modificações na permeabilidade da membrana plasmática. Em um primeiro instante, abrem-se "portas de passagem" de Na+, permitindo a entrada de grande quantidade desses íons na célula. Com isso, aumenta a quantidade relativa de carga positiva na região interna na membrana, provocando sua despolarização. Em seguida abrem-se as "portas de passagem" de K+, permitindo a saída de grande quantidade desses íons. Com isso, o interior da membrana volta a ficar com excesso de cargas negativas (repolarização). A despolarização em uma região da membrana dura apenas cerca de 1,5 milésimo de segundo (ms).

O estímulo provoca, assim, uma onda de despolarizações e repolarizações que se propaga ao longo da membrana plasmática do neurônio. Essa onda de propagação é o impulso nervoso, que se propaga em um único sentido na fibra nervosa. Dentritos sempre conduzem o impulso em direção ao corpo celular, por isso diz que o impulso nervoso no dentrito é celulípeto. O axônio por sua vez, conduz o impulso em direção às suas extremidades, isto é, para longe do corpo celular; por isso diz-se que o impulso nervoso no axônio é celulífugo.

A velocidade de propagação do impulso nervoso na membrana de um neurônio varia entre 10cm/s e 1m/s. A propagação rápida dos impulsos nervosos é garantida pela presença da bainha de mielina que recobre as fibras nervosas. A bainha de mielina é constituída por camadas concêntricas de membranas plasmáticas de células da glia, principalmente células de Schwann. Entre as células gliais que envolvem o axônio existem pequenos espaços, os nódulos de Ranvier, onde a membrana do neurônio fica exposta.

Nas fibras nervosas mielinizadas, o impulso nervoso, em vez de se propagar continuamente pela membrana do neurônio, pula diretamente de um nódulo de Ranvier para o outro. Nesses neurônios mielinizados, a velocidade de propagação do impulso pode atingir velocidades da ordem de 200m/s (ou 720km/h ).

Sistema Nervoso
Clique para Ampliar

Sinapses: transmissão do impulso nervoso entre células

Um impulso é transmitido de uma célula a outra através das sinapses (do grego synapsis, ação de juntar). A sinapse é uma região de contato muito próximo entre a extremidade do axônio de um neurônio e a superfície de outras células. Estas células podem ser tanto outros neurônios como células sensoriais, musculares ou glandulares.

As terminações de um axônio podem estabelecer muitas sinapses simultâneas.

Na maioria das sinapses nervosas, as membranas das células que fazem sinapses estão muito próximas, mas não se tocam. Há um pequeno espaço entre as membranas celulares (o espaço sináptico ou fenda sináptica).

Quando os impulsos nervosos atingem as extremidades do axônio da célula pré-sináptica, ocorre liberação, nos espaços sinápticos, de substâncias químicas denominadas neurotransmissores ou mediadores químicos, que tem a capacidade de se combinar com receptores presentes na membrana das célula pós-sináptica, desencadeando o impulso nervoso. Esse tipo de sinapse, por envolver a participação de mediadores químicos, é chamado sinapse química.

Os cientistas já identificaram mais de dez substâncias que atuam como neurotransmissores, como a acetilcolina, a adrenalina (ou epinefrina), a noradrenalina (ou norepinefrina), a dopamina e a serotonina.

Sistema Nervoso
Clique para Ampliar

Sinapses Neuromusculares

A ligação entre as terminações axônicas e as células musculares é chamada sinapse neuromuscular e nela ocorre liberação da substância neurotransmissora acetilcolina que estimula a contração muscular.

Sinapses Elétricas

Em alguns tipos de neurônios, o potencial de ação se propaga diretamente do neurônio pré-sináptico para o pós-sináptico, sem intermediação de neurotransmissores. As sinapses elétricas ocorrem no sistema nervoso central, atuando na sincronização de certos movimentos rápidos.

Para que todas as funções sejam desempenhadas adequadas e coordenadamente , o nosso organismo dispõe de um sistema que integra todos os órgãos do corpo .É o sistema neuroendócrino.

Para que possamos responder rapidamente a estímulos como caminhar ,ler, pegar algo etc. ou

Seja , situações que dependem da nossa vontade , utilizamos o sistema nervoso voluntário .Mas em outras situações não dependentes da nossa vontade , como batimentos cardíacos , digestão etc. aí utilizamos o sistema nervoso involuntário.

Sistema nervoso somático: *central- responsável pelo controle de todas as atividades nervosas .(é formado pelo encéfalo( cérebro ,cerebelo e bulbo) e pela a medula espinhal.

Encéfalo se aloja na caixa craniana , enquanto Que a medula se localiza no interior da coluna vertebral .Além disso é envolvido por três membranas; as meninges (dumáter, aracnóide e a pia-máter)tem sua função protetora (impede o atrito e o deslocamento desses órgãos ,pois possuem vasos sangüíneos que irrigam o sistema nervoso.

Também na meninges encontramos um líquido cristalino chamado de líquido cefalorraquidiano,que protege os órgãos do snc contra choques mecânicos .

Meningite é causada por vírus e bactérias que atacam as meninges assim inflamando-as.

Cérebro: É o maior órgão do encéfalo , pesa, num adulto , cerca de 1.400gramas .Divide-se em dois hemisférios cerebrais e apresenta em sua superfície o córtex cerebral , responsável pela percepção dos sentidos , armazenamento de informações etc. o córtex é a sede do controle dos atos conscientes e inconscientes e também da inteligência.

Dicéfalo- é onde tem o controle do sono ,da fome etc.

Cerebelo- chamada de arvore da vida ,tem movimentos musculares precisos e o equilíbrio do corpo .

Bulbo- É responsável de controlar a pressão sangüínea e o ritmo respiratório .

Medula espinhal- conduzem estímulos ao encéfalo e as respostas do encéfalo , portanto são nervos mistos .

Em certas situações , a medula funciona como centro nervoso , isto é , processa ela mesma, a resposta . É o que absorvamos , por exemplo , nos reflexos . Ao pisarmos sobre um prego , imediatamente recolhemos o pé . o estímulo foi percebido pelos receptores dos pés , transmitido até a medula que se encarregou de processar a resposta .Ao recolhermos o pé realizamos um ato reflexo . o trajeto percorrido pelo estímulo denomina-se arco- reflexo .

Função do Sistema Nervoso

O sistema nervoso é responsável pelo ajustamento do organismo ao ambiente. Sua função é perceber e identificar as condições ambientais externas, bem como as condições reinantes dentro do próprio corpo e elaborar respostas que adaptem a essas condições.

A unidade básica do sistema nervoso é a célula nervosa, denominada neurônio, que é uma célula extremamente estimulável; é capaz de perceber as mínimas variações que ocorrem em torno de si, reagindo com uma alteração elétrica que percorre sua membrana. Essa alteração elétrica é o impulso nervoso.

As células nervosas estabelecem conexões entre si de tal maneira que um neurônio pode transmitir a outros os estímulos recebidos do ambiente, gerando uma reação em cadeia.

Neurônios: células nervosas

Um neurônio típico apresenta três partes distintas: corpo celular, dentritos e axônio.

No corpo celular, a parte mais volumosa da célula nervosa, se localiza o núcleo e a maioria das estruturas citoplasmáticas.

Os dentritos (do grego dendron, árvore) são prolongamentos finos e geralmente ramificados que conduzem os estímulos captados do ambiente ou de outras células em direção ao corpo celular.

O axônio é um prolongamento fino, geralmente mais longo que os dentritos, cuja função é transmitir para outras células os impulsos nervosos provenientes do corpo celular.

Os corpos celulares dos neurônios estão concentrados no sistema nervoso central e também em pequenas estruturas globosas espalhadas pelo corpo, os gânglios nervosos. Os dentritos e o axônio, genericamente chamados fibras nervosas, estendem-se por todo o corpo, conectando os corpos celulares dos neurônios entre si e às células sensoriais, musculares e glandulares.

Células Glia

Além dos neurônios, o sistema nervoso apresenta-se constituído pelas células glia, ou células gliais, cuja função é dar sustentação aos neurônios e auxiliar o seu funcionamento. As células da glia constituem cerca de metade do volume do nosso encéfalo. Há diversos tipos de células gliais. Os astrócitos, por exemplo, dispõem-se ao longo dos capilares sanguíneos do encéfalo, controlando a passagem de substâncias do sangue para as células do sistema nervoso. Os oligodendrócitos e as células de Schwann enrolam-se sobre os axônios de certos neurônios, formando envoltórios isolantes.

Impulso Nervoso

A despolarização e a repolarização de um neurônio ocorrem devido as modificações na permeabilidade da membrana plasmática. Em um primeiro instante, abrem-se "portas de passagem" de Na+, permitindo a entrada de grande quantidade desses íons na célula. Com isso, aumenta a quantidade relativa de carga positiva na região interna na membrana, provocando sua despolarização. Em seguida abrem-se as "portas de passagem" de K+, permitindo a saída de grande quantidade desses íons. Com isso, o interior da membrana volta a ficar com excesso de cargas negativas (repolarização). A despolarização em uma região da membrana dura apenas cerca de 1,5 milésimo de segundo (ms).

O estímulo provoca, assim, uma onda de despolarizações e repolarizações que se propaga ao longo da membrana plasmática do neurônio. Essa onda de propagação é o impulso nervoso, que se propaga em um único sentido na fibra nervosa. Dentritos sempre conduzem o impulso em direção ao corpo celular, por isso diz que o impulso nervoso no dentrito é celulípeto. O axônio por sua vez, conduz o impulso em direção às suas extremidades, isto é, para longe do corpo celular; por isso diz-se que o impulso nervoso no axônio é celulífugo.

A velocidade de propagação do impulso nervoso na membrana de um neurônio varia entre 10cm/s e 1m/s. A propagação rápida dos impulsos nervosos é garantida pela presença da bainha de mielina que recobre as fibras nervosas. A bainha de mielina é constituída por camadas concêntricas de membranas plasmáticas de células da glia, principalmente células de Schwann. Entre as células gliais que envolvem o axônio existem pequenos espaços, os nódulos de Ranvier, onde a membrana do neurônio fica exposta.

Nas fibras nervosas mielinizadas, o impulso nervoso, em vez de se propagar continuamente pela membrana do neurônio, pula diretamente de um nódulo de Ranvier para o outro. Nesses neurônios mielinizados, a velocidade de propagação do impulso pode atingir velocidades da ordem de 200m/s (ou 720km/h ).

Sistema Nervoso
Divisão Partes Funções gerais
Sistema nervoso central (SNC) Encéfalo
Medula espinal
Processamento e integração de informações
Sistema nervoso periférico (SNP) Nervos
Gânglios
Condução de informações entre órgãos receptores de estímulos, o SNC e órgãos efetuadores (músculos, glândulas...)

Sistema Nervoso
Sinapses: transmissão do impulso nervoso entre células
Clique para Ampliar

Um impulso é transmitido de uma célula a outra através das sinapses (do grego synapsis, ação de juntar). A sinapse é uma região de contato muito próximo entre a extremidade do axônio de um neurônio e a superfície de outras células. Estas células podem ser tanto outros neurônios como células sensoriais, musculares ou glandulares.

As terminações de um axônio podem estabelecer muitas sinapses simultâneas.

Na maioria das sinapses nervosas, as membranas das células que fazem sinapses estão muito próximas, mas não se tocam. Há um pequeno espaço entre as membranas celulares (o espaço sináptico ou fenda sináptica).

Quando os impulsos nervosos atingem as extremidades do axônio da célula pré-sináptica, ocorre liberação, nos espaços sinápticos, de substâncias químicas denominadas neurotransmissores ou mediadores químicos, que tem a capacidade de se combinar com receptores presentes na membrana das célula pós-sináptica, desencadeando o impulso nervoso. Esse tipo de sinapse, por envolver a participação de mediadores químicos, é chamado sinapse química.

Os cientistas já identificaram mais de dez substâncias que atuam como neurotransmissores, como a acetilcolina, a adrenalina (ou epinefrina), a noradrenalina (ou norepinefrina), a dopamina e a serotonina.

Impulso Nervoso

A ligação entre as terminações axônicas e as células musculares é chamada sinapse neuromuscular e nela ocorre liberação da substância neurotransmissora acetilcolina que estimula a contração muscular.

Sinapses Elétricas

Sinapses Elétricas
Clique para Ampliar

Em alguns tipos de neurônios, o potencial de ação se propaga diretamente do neurônio pré-sináptico para o pós-sináptico, sem intermediação de neurotransmissores. As sinapses elétricas ocorrem no sistema nervoso central, atuando na sincronização de certos movimentos rápidos.

Fonte: www.webciencia.com

नेर्वोसो 1

Sistema Nervoso

Sistema Nervoso Cefalorraquidiano

Esse sistema, também chamado cérebro espinhal, é formado por células estreladas que recebem o nome de neurônios.

Os neurônios são formados pelo corpo celular, que compreende a estrela do neurônio e tem cor cinzenta.

Do corpo celular saem numerosas ramificações denominadas dentritos e um grande prolongamento de cor branca denominado axônio.

Os axônios constituem os nervos e chegam, em certos casos, a medir cerca de um metro de comprimento. Cada axônio é envolvido por uma membrana gordurosa e isolante denominada bainha de mielina.

O sistema cefalorraquidiano divide-se em duas partes: sistema nervoso central e sistema nervoso periférico.

Sistema Nervoso Central

É formado pelo encéfalo e pela medula espinhal. Os encéfalo localiza-se dentro da caixa craniana e é constituído por três órgãos: cérebro, cerebelo e bulbo. A medula espinhal situa-se dentro da coluna vertebral, ou seja, no canal medular.

Todos esses órgãos são formados por uma substância cinzenta e uma substância branca. A substância cinzenta produz ou recebe os estímulos nervosos, enquanto a substância branca é responsável pela transmissão dos estímulos nervosos do sistema nervoso para os órgãos e vice-versa.

Cérebro

É o órgão mais volumoso e mais importante do sistema nervoso. Divide-se em duas partes denominadas hemisférios cerebrais. Os hemisférios estão ligados um ao outro pelo corpo caloso.

A superfície do cérebro apresenta sulcos chamados cissuras. Os sulcos dividem a superfície do cérebro em regiões que se chamam circunvoluções cerebrais. A maior das cissuras é a inter-hemisférica, que divide o cérebro nos dois hemisférios cerebrais.

Cada circunvolução cerebral é responsável pelo controle de determinadas funções. As circunvoluções que se localizam na frente, junto ao osso frontal, controlam a fala. As que se situam atrás, junto ao osso occipital, controlam as sensações visuais. Junto aos ossos parietais ficam as circunvoluções que controlam os movimentos do corpo. As sensações auditivas são controladas pelas circunvoluções localizadas junto aos ossos temporais.

A substância cinzenta do cérebro localiza-se na parte externa; a substância branca situa-se na parte interna.

O cérebro é o órgão mais importante do sistema nervoso, pois é ele que controla os movimentos, recebe e interpreta os estímulos sensitivos, coordena os atos da inteligência, da memória, do raciocínio e da imaginação.

Cerebelo

Situa-se embaixo e na parte posterior do cérebro. divide-se em duas massas denominadas lobos cerebelares. Os lobos são ligados no centro pelo verme cerebral.

Da mesma forma que o cérebro, o cerebelo apresenta substância cinzenta na parte exterior e branca no interior.

A função do cerebelo é coordenar os movimentos do corpo para manter seu equilíbrio. Regula também o tônus muscular, que é o estado de semicontração que os músculos se encontram, para entrarem imediatamente em movimento, sempre que for necessário.

O álcool afeta o cerebelo e é por essa razão que a pessoa bêbada não consegue caminhar em linha reta.

Bulbo

Localiza-se embaixo do cérebro e na frente do cerebelo. Possui a forma de um cone invertido. Ao contrário do cérebro e do cerebelo, no bulbo a substância branca situa-se na parte externa e a cinzenta, na interna.

A função do bulbo é conduzir os impulsos nervosos do cérebro para a medula espinhal e vice-versa. Também produz os estímulos nervosos que controlam a circulação, a respiração, a digestão e a excreção.

A região do bulbo que controla os movimentos respiratórios e os cardíacos chama-se nó vital. Recebe esse nome porque se uma pessoa recebe uma forte pancada nesse local poderá morrer instantaneamente, devido à paralisação dos movimentos respiratórios e cardíacos.

Medula Espinhal

É um tubo nervoso, com aproximadamente 45 centímetros de comprimento e 1 centímetro de diâmetro, situado dentro da coluna vertebral. Na parte superior, a medula está ligada ao bulbo, como se fosso uma continuação desse órgão.

A medula espinhal possui também a substância branca na parte externa e a cinzenta, na interna. A substância cinzenta se dispõe na forma de um H, cujos ramos dão origem às raízes nervosas que saem da medula.

A medula espinhal tem duas funções:

Conduzir os impulsos nervosos do corpo para o cérebro. Essa função é realizada pela substância branca.

Produzir os impulsos nervosos. Essa função é realizada pela substância cinzenta. A medula é capaz de coordenar os atos involuntários ou inconscientes, como retirar o deio rapidamente de uma panela de água fervendo.

Sistema Nervoso Periférico

É formado por um conjunto de nervos que podem ser classificados em dois tipos: raquidianos e cranianos.

Nervos Raquidianos

São 31 pares de nervos que partem da medula espinhal e se ramificam por todo o corpo. Os nervos raquidianos são formados pelas raízes nervosas que se iniciam nos ramos que formam o H da substância cinzenta da medula espinhal.

Quanto à transmissão dos estímulos nervosos, os nervos podem ser de três tipos:

1. Sensitivos

Levam os estímulos nervosos do corpo para o cérebro.

2. Motores

Levam os estímulos nervosos do cérebro para o corpo.

3. Mistos

São sensitivos e motores, simultaneamente.

Na realidade, os nervos raquidianos são mistos, pois são formados por duas raízes nervosas: a raiz anterior, que é motora, e a raiz posterior, que é sensitiva.

De acordo com as regiões da coluna vertebral, os 31 pares de nervos raquidianos distribuem-se da seguinte forma:

Oito pares de nervos cervicais

Doze pares de nervos dorsais

Cinco pares de nervos lombares

Seis pares de nervos sagrados ou sacrais

Nervos Cranianos

Os nervos cranianos são constituídos por doze pares de nervos que saem do encéfalo e se distribuem pelo corpo. Podem ser sensitivos, motores ou mistos.

A seguir, apresento a relação desses doze pares de nervos e suas respectivas funções.

Óptico

Conduz os estímulos de luz do globo ocular para o cérebro.

Motor ocular comum

Estimula a contração dos músculos que movimentam os olhos para baixo e para cima.

Motor ocular externo

Estimula certos músculos dos olhos, movimentando-os lateralmente.

Auditivo

Conduz para o cérebro os estímulos sonoros e os impulsos responsáveis pelo equilíbrio.

Olfativo

Conduz os estímulos do olfato para o cérebro.

Trigêmeo

Leva ao cérebro a sensibilidade da parte superior da face e dos dentes. Estimula também os músculos que movimentam o maxilar inferior.

Glossofaríngio

Conduz os estímulos do paladar para o cérebro e movimenta os músculos da faringe.

Hipoglosso

Estimula os músculos da língua.

Patético

Estimula certos músculos dos olhos, movimentando-os para os lados e para baixo.

Facial

Estimula os músculos da face, as glândulas salivares e as lacrimais.

Pneumogástrico ou Vago

Estimula o coração, os pulmões, o estômago e o intestino, entre outros órgãos, dando movimento e sensibilidade às vísceras.

Espinhal

Estimula os músculos do pescoço, permitindo a fonação e os movimentos da cabeça e da faringe.

Sistema Nervoso Autônomo

Como o próprio nome diz, o sistema nervoso autônomo é aquele que funciona independentemente de nossa vontade. É ele que controla as funções da vida vegetativa, como a digestão e a respiração.

O sistema nervoso autônomo compõe-se de três partes:

1. Dois ramos nervosos situados ao lado da coluna vertebral. Esses ramos são formados por pequenas dilatações denominadas gânglios, num total de 23 pares.

2. Um conjunto de nervos que liga os gânglios nervosos aos diversos órgãos de nutrição, como o estômago, o coração e os pulmões.

3. Um conjunto de nervos comunicantes que ligam os gânglios aos nervos raquidianos, fazendo com que os sistema autônomo não seja totalmente independente do sistema nervoso cefalorraquidiano.

O sistema nervoso autônomo divide-se em sistema nervoso simpático e sistema nervoso parasimpático. De modo geral, esses dois sistemas têm funções contrárias.

Um corrige os excessos do outro. Por exemplo, se o sistema simpático acelera demasiadamente as batidas do coração, o sistema parassimpático entra em ação, diminuindo o ritmo cardíaco. Se o sistema simpático acelera o trabalho do estômago e dos intestinos, o parassimpático entra em ação para diminuir as contrações desses órgãos.

Fonte: www.escolavesper.com.br

Excretor

Aparelho Urinário

Sistema Urinário

Como o sistema urinário trabalha?

Seu corpo capta nutrientes dos alimentos e os utiliza para manter todas as funções corpóreas incluindo energia e auto-reparo. Depois de seu organismo ter adquirido o que precisa dos alimentos, produtos desprezados são deixados para trás no sangue e no intestino. O sistema urinário atua com os pulmões, pele, e intestino - todos excretam impurezas e produtos do metabolismo - para manter balanceadas as substâncias e a água de seu corpo. Adultos eliminam cerca de um litro a um litro e meio de urina por dia. A quantidade depende de diversos fatores, especialmente da quantidade de fluidos e alimentos que a pessoa consome e de quanto líquido é perdido através de suor e da respiração. Certos tipos de medicamentos também podem interferir na quantidade de urina é eliminada.

O sistema urinário remove um tipo de dejeto chamado uréia. Ele aparece quando carne, fermento, e algumas verduras, são decompostas no seu corpo. A uréia é levada na corrente sanguínea até os rins.

Os rins são órgãos que tem formato de feijão e o tamanho aproximado do seu punho. Eles estão próximos do meio das costas, logo abaixo das costelas. Os rins removem a uréia do sangue através de pequenas unidades filtradoras chamadas néfrons. Cada néfron é constituído por uma bola formada de pequenos capilares sanguíneos, chamada glomérulo, e um pequeno tubo chamado túbulo renal. Uréia, junto com água e outras substâncias desprezáveis, formam a urina conforme passam pelos nefrons e seguem pelo túbulo renal do rim.

Rim e Via Excretora

Sistema Urinário

Dos rins, a urina viaja através de dois finos tubos chamados ureteres até a bexiga. Os ureteres medem aproximadamente de 8 a 10 polegadas de comprimento. Músculos nas paredes dos ureteres constantemente contraem e relaxam para forçar a urina dos rins para baixo. Se é permitido que a urina fique parada, ou volte para cima, uma infecção renal pode se desenvolver. Pequenas quantidades de urina são despejadas na bexiga pelos ureteres a cada 10 a 15 segundos, aproximadamente.

A bexiga é um órgão muscular oco com formato de um balão. Ela se situa na sua pelve (parte inferior do abdome) e é mantida no lugar por ligamentos inseridos em outros órgãos e nos ossos da pelve. A bexiga armazena urina até que você esteja pronto para ir ao banheiro para esvaziá-la. Ela incha obtendo uma forma arredondada quando está cheia e fica diminuída quando vazia. Se o sistema urinário está íntegro, a bexiga pode comportar até 500ml (2 copos) de urina confortavelmente por 2 a 5 horas.

Bexiga

Sistema Urinário

Músculos circulares chamados esfíncteres ajudam a evitar que a urina vaze. Os músculos esfincterianos se fecham como uma fita de borracha ao redor da abertura da bexiga na uretra, o tubo que permite que a urina passe para fora do corpo.

Nervos da bexiga informam quando é hora de urinar (esvaziar a bexiga). Ao passo que a bexiga vai ficando repleta de urina, pode-se perceber uma necessidade de urinar. A sensação de urinar torna-se mais forte à medida que a urina continua a encher e alcança seu limite. Neste momento, nervos da bexiga enviam ao cérebro uma mensagem de que a bexiga está cheia, e sua urgência para esvaziar a bexiga se intensifica.

Quando você urina, o cérebro sinaliza aos músculos da bexiga para se contraírem, espremendo a urina para fora da bexiga. Ao mesmo tempo, o cérebro sinaliza aos músculos do esfíncter para relaxarem. Quando estes músculos relaxam a urina sai da bexiga através da uretra. Quando todos os sinais ocorrem na ordem correta, acontece o ato de urinar normal.

Fonte: www.sbv.org.br

hormonios

Principais Hormônios

Hormônio Onde é Produzido Função
Aldosterona
Adrenais
Ajuda na regulação do equilíbrio do sal e da água através de sua retenção e da excreção do potássio
Hormônio antidiurético (vasopressina)
Hipófise
Faz com que os rins retenham água e, juntamente com aldosterona, ajuda no controle da pressão arterial
Corticosteróide
Adrenais
Produz efeitos disseminados por todo o organismo; em especial, tem uma ação antiinflamatória; mantém a concentração sérica de açúcar, a pressão arterial e a força muscular; auxilia no controle do equilíbrio do sal e da água
Corticotropina
Hipófise
Controla a produção e a secreção de hormônios do córtex adrenal
Eritropoietina
Rins
Estimula a produção de eritrócitos
Estrogênios
Ovários
Controla o desenvolvimento das características sexuais e do sistema reprodutivo femininos
Glucagon
Pâncreas
Aumenta a concentração sérica de açúcar
Hormônio do crescimento
Hipófise
Controla o crescimento e o desenvolvimento; promove a produção de proteínas
Insulina
Pâncreas
Reduz a concentração sérica de açúcar; afeta o metabolismo da glicose, das proteínas e das gorduras em todo corpo
Hormônio luteinizante e hormônio folículoestimulante
Hipófise
Controlam as funções reprodutoras, como a produção de espermatozóides e de sêmen, a maturação dos óvulos e os ciclos menstruais; controlam as características sexuais masculinas e femininas (p.ex., a distribuição dos pêlos, a formação dos músculos, a textura e a espessura da pele, a voz e, talvez, os traços da personalidade)
Ocitocina
Hipófise
Produz contração da musculatura uterina e dos condutos das glândulas mamárias
Paratormônio (hormônio paratireoídeo)
Paratireóides
Controla a formação óssea e a excreção do cálcio e do fósforo
Progesterona
Ovários
Prepara o revestimento do útero para a implantação de um ovo fertilizado e prepara as glândulas mamárias para a secreção de leite
Prolactina
Hipófise
Inicia e mantém a produção de leite das glândulas mamárias
Renina e angiotensina
Rins
Controlam a pressão arterial
Hormônio tireoidiano
Tireóide
Regula o crescimento, a maturação e a velocidade do metabolismo
Hormônio estimulante da tireóide
Hipófise
Estimula a produção e a secreção de hormônios pela tireóide

Determinados hormônios que são controlados pela hipófise variam de acordo com programas previstos. Por exemplo, o ciclo menstrual de uma mulher envolve flutuações mensais da secreção do hormônio luteinizante e hormônio folículoestimulante pela hipófise. Os hormônios ovarianos (os estrogênios e a progesterona) também apresentam flutuações mensais.

Ainda não está claro como o hipotálamo e a hipófise controlam esses biorritmos. No entanto, sabe-se com certeza que os órgãos respondem a algum tipo de relógio biológico. Existem outros fatores que também estimulam a produção de hormônios. A prolactina, um hormônio secretado pela hipófise, faz com que as glândulas mamárias produzam leite. O lactente, ao sugar o mamilo, estimula a hipófise a secretar mais prolactina.

A sucção também aumenta a secreção de ocitocina, a qual provoca a contração dos canais lactíferos, conduzindo o leite até o mamilo para alimentar o lactente. As glândulas que não são controladas pela hipófise (p.ex., ilhotas pancreáticas e paratireóides) possuem seus próprios sistemas para determinar quando é necessária uma maior ou uma menor secreção.

Por exemplo, a concentração de insulina aumenta logo após as refeições, pois o organismo precisa processar os açúcares dos alimentos. Entretanto, se a concentração de insulina permanecesse elevada, a concentração sérica de açúcar diminuiria perigosamente. Outras concentrações hormonais variam por razões menos óbvias. As concentrações de corticosteróides e do hormônio do crescimento são mais elevadas pela manhã e mais baixos no meio da tarde. As razões dessas variações diárias não são totamente conhecidas.

A Função dos Transmissores

Embora todas as células respondam aos transmissores e a maioria delas os produzam, os seus efeitos são comumente agrupados em três sistemas principais (o nervoso, o imune e o endócrino) essenciais para a coordenação das atividades do organismo.

Esses três sistemas têm muito em comum e cooperam entre si. Seus transmissores são compostos por proteínas ou derivados das gorduras. Alguns transmissores percorrem somente uma curta distância (inferior a 2,5 cm), enquanto outros percorrem distâncias consideráveis através da corrente sangüínea para atingirem seus alvos. Os transmissores ligam-se às suas célulasalvo utilizando proteínas receptoras específicas localizadas sobre a superfície celular ou no interior da célula. Alguns transmissores alteram a permeabilidade das membranas celulares para determinadas substâncias (p.ex., a insulina altera o transporte da glicose através das membranas celulares). Outros transmissores, como a adrenalina (epinefrina) e o glucagon, alteram a atividade de seus receptores, fazendo com que eles produzam outras substâncias que atuam como transmissores secundários.

Eles afetam a atividade do material genético da célula, alterando a produção celular de proteínas ou a atividade das proteínas que já se encontram no interior da célula. O efeito de um transmissor específico depende de seu local de secreção. Por exemplo, a noradrenalina (norepinefrina) eleva a pressão arterial quando as adrenais a secretam no sangue. No entanto, quando ela é liberada no sistema nervoso, a noradrenalina estimula apenas a atividade das células nervosas próximas, sem afetar a pressão arterial.

Fonte: www.msd-brazil.com

reprodução

Quais as características físicas que diferenciam o homem da mulher?

Uma série de características físicas diferenciam o corpo do homem do da mulher. As mais marcantes dizem respeito ao sistema reprodutor. Mas existem outras de ordem mais geral. Por exemplo, a textura da pele, que na mulher é mais macia; a quantidade de pêlos, bem menor na mulher; a distribuição de gordura pelo corpo, que faz com que a mulher tenha quadris mais largos, ventre mais saliente e coxas mais roliças. Todas essas características são determinadas pela ação dos hormônios femininos (estrógeno e progesterona).

Como é formado o aparelho reprodutor feminino?

O aparelho reprodutor feminino é formado por órgãos externos, que são visíveis (genitais externos e seios), e internos (ovários, útero, trompas, etc.).

Quais os órgãos externos do aparelho reprodutor feminino?

Os genitais externos, que compõem a vulva, podem ser visualizados com a ajuda de um espelho.

São eles:

Monte de Vênus

Parte frontal da vulva. É uma saliência recoberta de pele e pêlos.

Grandes lábios

Duas pregas de pele (uma de cada lado), recobertas total ou parcialmente de pêlos.

Pequenos lábios

Duas pregas menores, sem pêlos, localizadas na parte interna dos grandes lábios, mais perto da entrada da vagina.

Clitóris

Pequena saliência situada na junção anterior aos pequenos lábios. É bastante sensível ao tato, tendo um papel importante na excitação sexual da mulher.

Orifício uretral

Pequena abertura redonda localizada logo abaixo do clitóris, na entrada da vagina. É o canal que liga a bexiga ao meio externo, por onde a urina é eliminada.

Entrada da vagina ou intróito vaginal

Abertura de contorno irregular, bem maior que o orifício uretral e por onde é eliminada a menstruação.

Hímen

Membrana fina, localizada na entrada da vagina. Ela geralmente se rompe nas primeiras relações sexuais.

Sistema Reprodutor Feminino

Seios (ou mamas)

Órgãos formados por dois tipos de tecido (glandular e gorduroso). Os seios começam a se desenvolver na adolescência, pela ação dos hormônios femininos. Também por essa ação, durante o ciclo menstrual eles podem aumentar de volume e tornam-se mais sensíveis, alguns dias antes da menstruação. Durante a gravidez, eles crescem, preparando-se para produzir leite (que ocorre após o parto).

Quais os órgãos internos do aparelho reprodutor feminino?

São eles:

Vagina

Canal em forma de tubo, que se estende da vulva (intróito vaginal) até a parte inferior do útero (colo uterino).

Útero

Órgão formado por tecido muscular, com formato de uma pêra (invertida). O útero tem uma cavidade cuja superfície está coberta por um tecido que possui muitas glândulas. Esse tecido, conhecido como endométrio, prepara-se durante cada ciclo menstrual para receber o ovo (óvulo fecundado). Se a gravidez não ocorrer, esse tecido se desprende e é eliminado, por meio da menstruação.

Sistema Reprodutor Feminino

A parte inferior do útero, chamada de colo do útero, termina no fundo da vagina, onde está o canal cervical, responsável pela comunicação entre a cavidade uterina e a vagina.

Trompas

Dois canais finos que saem de cada lado do fundo do útero e terminam com as extremidades dilatadas, perto dos ovários. É o lugar onde as sementes masculinas, os espermatozóides, unem-se ao óvulo, quando há fecundação.

Ovários

Duas glândulas em forma de amêndoa, situadas em cada lado do útero, logo abaixo das trompas. Sob a ação do sistema nervoso central, os ovários produzem os hormônios femininos (estrógeno e progesterona) que provocam o desenvolvimento do óvulo. Uma vez por mês, expulsam o óvulo maduro que é captado pela trompa.

Fonte: www.clinicapinotti.com.br

feminino

Sistema Reprodutor Feminino
( Clique para Ampliar )

Aos órgãos genitais femininos cabe a tarefa de produzir o óvulo, isto é, o germe feminino, e de reter o produto da eventual fecundação, permitindo o seu desenvolvimento. São eles compostos dos ovários, onde o óvulo se forma, das tubas uterinas, do útero e da vagina, e ainda da vulva, ou seja, o complexo dos órgãos genitais externos.

A vagina é um tubo ímpar e médio que vai desde o colo uterino até a vulva, dirigido de cima a baixo e de trás para frente. O limite entre a vagina e a vulva constitui uma dobra, o hímen. A cada lado da abertura externa da vagina há duas glândulas de meio milímetro, chamadas bartolino, secretoras de um muco que lubrifica na copulação. A função da vagina é receber o pênis no coito e dar saída ao feto no momento do parto, assim como expulsar o conteúdo menstrual.

Sistema Reprodutor Feminino

Fonte: www.corpohumano.hpg.ig.com.br

Aquecimento

O aquecimento global é o aumento da temperatura terrestre (não só numa zona específica, mas em todo o planeta) e tem preocupado a comunidade científica cada vez mais. Acredita-se que seja devido ao uso de combustíveis fósseis e outros processos em nível industrial, que levam à acumulação na atmosfera de gases propícios ao Efeito Estufa, tais como o Dióxido de Carbono, o Metano, o Óxido de Azoto e os CFCs.

Há muitas décadas que se sabe da capacidade que o Dióxido de Carbono tem para reter a radiação infravermelha do Sol na atmosfera, estabilizando assim a temperatura terrestre por meio do Efeito Estufa, mas, ao que parece, isto em nada preocupou a humanidade que continuou a produzir enormes quantidades deste e de outros gases de Efeito Estufa.

A grande preocupação é se os elevados índices de Dióxido de Carbono que se têm medido desde o século passado, e tendem a aumentar, podem vir a provocar um aumento na temperatura terrestre suficiente para trazer graves conseqüências à escala global, pondo em risco a sobrevivência dos seus habitantes.

Na realidade, desde 1850 temos assistido a um aumento gradual da temperatura global, algo que pode também ser causado pela flutuação natural desta grandeza. Tais flutuações têm ocorrido naturalmente durante várias dezenas de milhões de anos ou, por vezes, mais bruscamente, em décadas. Estes fenômenos naturais bastante complexos e imprevisíveis podem ser a explicação para as alterações climáticas que a Terra tem sofrido, mas também é possível e mais provável que estas mudanças estejam sendo provocadas pelo aumento do Efeito Estufa, devido basicamente à atividade humana.

Para que se pudesse compreender plenamente a causa deste aumento da temperatura média do planeta, foi necessário fazer estudos exaustivos da variabilidade natural do clima. Mudanças, como as estações do ano, às quais estamos perfeitamente habituados, não são motivos de preocupação.

Na realidade, as oscilações anuais da temperatura que se têm verificado neste século estão bastante próximo das verificadas no século passado e, tendo os séculos XVI e XVII sido frios (numa escala de tempo bem mais curta do que engloba idades do gelo), o clima pode estar ainda a se recuperar dessa variação. Desta forma os cientistas não podem afirmar que o aumento de temperatura global esteja de alguma forma relacionado com um aumento do Efeito Estufa, mas, no caso dos seus modelos para o próximo século estarem corretos, os motivos para preocupação serão muitos.

Segundo as medições da temperatura para épocas anteriores a 1860, desde quando se tem feito o registro das temperaturas em várias áreas de globo, as medidas puderam ser feitas a partir dos anéis de árvores, de sedimentos em lagos e nos gelos, o aumento de 2 a 6 ºC que se prevê para os próximos 100 anos seria maior do que qualquer aumento de temperatura alguma vez registrado desde o aparecimento da civilização humana na Terra. Desta forma torna-se assim quase certo que o aumento da temperatura que estamos enfrentando é causado pelo Homem e não se trata de um fenômeno natural.

No caso de não se tomarem medidas drásticas, de forma a controlar a emissão de gases de Efeito Estufa é quase certo que teremos que enfrentar um aumento da temperatura global que continuará indefinidamente, e cujos efeitos serão piores do que quaisquer efeitos provocados por flutuações naturais, o que quer dizer que iremos provavelmente assistir às maiores catástrofes naturais (agora causadas indiretamente pelo Homem) alguma vez registradas no planeta.

A criação de legislação mais apropriada sobre a emissão dos gases poluentes é de certa forma complicada por também existirem fontes de Dióxido de Carbono naturais (o qual manteve a temperatura terrestre estável desde idades pré-históricas), o que torna também o estudo deste fenômeno ainda mais complexo.

Há ainda a impossibilidade de comparar diretamente este aquecimento global com as mudanças de clima passadas devido à velocidade com que tudo está acontecendo. As analogias mais próximas que se podem estabelecer são com mudanças provocadas por alterações abruptas na circulação oceânica ou com o drástico arrefecimento global que levou à extinção dos dinossauros. O que existe em comum entre todas estas mudanças de clima são extinções em massa, por todo o planeta tanto no nível da fauna como da flora. Esta analogia vem reforçar os modelos estabelecidos, nos quais prevêem que tanto os ecossistemas naturais como as comunidades humanas mais dependentes do clima venham a ser fortemente pressionados e postos em perigo.

Fonte: educar.sc.usp.br

Total de visualizações de página

 
Desenvolvido por Othon Fagundes