Um dos principais problemas dos seres vivos é a obtenção de energia para as suas actividades. De acordo com a teoria heterotrófica, os primeiros seres vivos seriam procariontes heterotróficos vivendo num meio aquático, donde retirariam nutrientes, formados na atmosfera e acumulados nos lagos e oceanos primitivos.
Devido á sua grande simplicidade, estes seres utilizariam processos igualmente rudimentares de retirar energia dessas moléculas de que se alimentavam. Esse mecanismo seria, quase com certeza, semelhante à fermentação realizada ainda por muitos organismos actuais.
Há mais de 2 mil milhões de anos, deverão ter surgido os primeiros organismos autotróficos, procariontes ainda mas capazes de produzir o seu próprio alimento através da fotossíntese. Este processo revolucionário, além de permitir a sobrevivência dos autotróficos, também serviu os heterotróficos, que passaram a alimentar-se deles.
A fotossíntese levou á acumulação de oxigénio na atmosfera terrestre, permitindo a algumas estirpes de procariontes tirar partido do poder oxidante dessa molécula para retirar muito mais energia dos nutrientes, através da respiração.
Os organismos retiram energia das mais diversas moléculas orgânicas (açucares, aminoácidos, ácidos gordos, etc.) mas a glicose é a mais frequente, tanto na fermentação como na respiração.
A fermentação é um conjunto de reacções químicas controladas enzimaticamente, em que uma molécula orgânica (geralmente a glicose) é degradada em compostos mais simples, libertando energia. Este processo tem grande importância económica, sendo utilizado no fabrico de bebidas alcoólicas e pão, entre outros alimentos.
Estudos realizados por Pasteur permitiram verificar que a fermentação alcoólica estava sempre associada ao crescimento de leveduras, mas que se estas fossem expostas a quantidades importantes de oxigénio produziriam (em vez de álcool e dióxido de carbono) água e dióxido de carbono. Destas observações, Pasteur concluiu que a fermentação é o mecanismo utilizado pelos seres vivos para produzir energia na ausência de oxigénio.
Já em 1897, o químico alemão Buchner demonstrou que a fermentação era apenas uma sequência de reacções químicas, podendo ocorrer fora de células vivas. Foi este estudo que revelou as enzimas (enzima = na levedura) e permitiu a compreensão do metabolismo celular em toda a sua globalidade.
Em 1930 os bioquímicos alemães Embden e Meyerhof descobriram a totalidade das etapas deste processo, pelo que essa sequência também é conhecida por cadeia de Embden-Meyerhof.
Dependendo do tipo de microrganismo presente, a fermentação pode ser:
fermentação alcoólica - produz como produtos finais etanol e dióxido de carbono, produtos utilizados pelo Homem na produção de vinho, cerveja e outras bebidas alcoólicas e do pão;
fermentação acética - produz como produto final o ácido acético, que causa o azedar do vinho ou dos sumos de fruta e sua consequente transformação em vinagre;
fermentação láctica - produz como produto final o ácido láctico, geralmente a partir da lactose do leite. O baixar do pH causado pela acumulação do ácido láctico causa a coagulação das proteínas do leite e a formação do coalho usado no fabrico de iogurtes e queijos.
Pode-se considerar as reacções da fermentação divididas em duas partes principais: a glicólise e a redução do ácido pirúvico.
Fermentação
A glicólise é o conjunto de reacções iniciais da degradação da glicose, semelhantes em todos os tipos de fermentação e na respiração aeróbia. Tem início com a activação da glicose, que recebe dois grupos fosfato, fornecidos pelo ATP, que se transforma em ADP.
Por este processo de fosforilação a glicose transforma-se em frutose 1,6-difosfato (molécula com 6 carbonos e dois fosfatos) que será quebrada em duas moléculas de gliceraldeído 3-fosfato (molécula com 3 carbonos e um fosfato), pois é altamente instável.
A energia desta quebra permite a ligação de um outro grupo fosfato inorgânico a cada uma destas moléculas, que se tornam gliceraldeído 1,3-difosfato. Estes grupos fosfato, energéticos, são então transferidos para moléculas de ADP, transformando-as em ATP. O gliceraldeído transforma-se, por sua vez, em ácido pirúvico.
Sabe-se que a glicólise ocorre em praticamente todos os seres vivos, mesmo que complementada com outras reacções, o que parece confirmar que deverá ter sido o primeiro fenómeno eficiente de produção de energia em células.
Glicólise
A segunda parte da fermentação consiste na redução do ácido pirúvico resultante da glicólise. Cada molécula de ácido pirúvico é reduzida pelo hidrogénio que é libertado pelo NADh4 produzido na glicólise, originando, conforme o tipo de organismo fermentativo, ácido láctico, ácido acético ou álcool etílico e dióxido de carbono.
Redução do ácido pirúvico
Assim, o rendimento energético líquido deste processo fermentativo é de apenas 2 moléculas de ATP por cada molécula de glicose degradada (recordemos que para activar a glicose foram investidos 2 ATP e que no final se produzem 4 ATP). Este processo é, portanto, muito pouco eficiente, pois apenas 4% da energia contida na molécula de glicose é disponibilizada para o organismo.
A fermentação não utiliza oxigénio e decorre no citoplasma das células, sendo cada etapa catalisada com a ajuda de uma enzima diferente.
Rendimento energético da fermentação
A fermentação degrada a glicose em moléculas menores mas ainda ricas em energia. Um claro exemplo disso é o álcool etílico, um dos possíveis produtos da fermentação, que pode inclusivé ser usado como combustível.
A respiração aeróbia, pelo contrário, liberta a totalidade da energia contida na molécula de glicose, como se pode comprovar analisando os produtos finais deste processo (água e dióxido de carbono), que são exactamente os mesmos utilizados na sua síntese.
Deste modo, apesar da perda de energia sob a forma de calor, a célula ainda consegue sintetizar 38 moléculas de ATP, em vez de apenas 2. Esta enorme vantagem em rendimento energético permite um metabolismo muito mais acelerado em organismos aeróbios que o presente em seres fermentativos ou anaeróbios.
O conjunto das reacções da respiração celular aeróbia é extremamente complexo, tendo sido uma das maiores conquistas da bioquímica moderna a sua compreensão.
Por esse motivo, consideram-se geralmente as seguintes etapas:
Respiração
Glicólise - decorre no citoplasma e consiste na degradação da glicose em ácido pirúvico. É designada a fase anaeróbia da respiração pois é exactamente igual ao processo com o mesmo nome que decorre na fermentação;
Glicólise
Oxidação do ácido pirúvico - decorre ainda no citoplasma e produz acetilcoenzima A. Inicia-se aqui a diferença entre a fermentação e a respiração aeróbia, pois o ácido pirúvico vai ser descarboxilado (liberta uma molécula de dióxido de carbono) e transforma-se em ácido acético.
Este é desidrogenado (liberta hidrogénio que reduz NAD a NADh4) e combina-se com a coenzima A, formando acetilcoenzima A. O grupo acetil da acetilcoenzima A será transferido para o interior da mitocôndria, onde decorrem as etapas seguintes do processo.
Oxidação do ácido pirúvico
Ciclo de Krebs - decorre na matriz da mitocôndria e consiste numa série de reacções complexas de descarboxilações e desidrogenações. Recebe o nome do bioquímico inglês que esclareceu o seu mecanismo em 1938.
Inicia-se com a combinação do grupo acetil com o ácido oxalacético, originando ácido cítrico. Este isomeriza-se transformando-se em ácido isocítrico. A sua desidrogenação origina ácido oxalsuccínico e os átomos de hidrogénio reduzem o NADP a NADPh4.
Uma descarboxilação liberta dióxido de carbono e forma ácido cetoglutárico. Este é novamente descarboxilado e desidrogenizado, originando ácido succínico e GTP (guanosina trifosfato, equivalente ao ATP) e reduzindo NAD a NADh4.
A desidrogenação transforma o ácido succínico em fumárico, com redução do FAD a FADh4. Este ácido reage com a água e forma ácido málico, que desidrogenizado recupera o ácido oxalacético, reduzindo NAD a NADh4.
Note-se que, por cada molécula de glicose decorrem 2 ciclos de Krebs pois formam-se 2 moléculas de ácido pirúvico no fim da glicólise;
Ciclo de Krebs
Cadeia respiratória - decorre na membrana interna da mitocôndria e consiste na transferência de 12 átomos de hidrogénio, libertados durante a oxidação da glicose, para o oxigénio.
Esta transferência forma água e liberta energia. Em condições não celulares a libertação de energia seria explosiva mas este mecanismo gradual permite que esta seja utilizada. Cada conjunto completo de moléculas receptoras intermédias de hidrogénio (por vezes apenas o seu electrão, ficando o protão em solução) designa-se, então, cadeia respiratória. Além das moléculas de NAD e FAD, já referidas anteriormente, são fundamentais nesta cadeia os citocromos.
De cada vez que um electrão é transferido há libertação de energia mas apenas se forma ATP quando a energia é superior a 10000 calorias. Por vezes, a energia é suficiente para formar mais que uma molécula de ATP mas apenas uma é sintetizada.
O oxigénio, aceptador final de electrões, fica carregado negativamente e combina-se com os protões em solução, originando água.
Pode-se neste momento calcular o rendimento energético da respiração, sabendo que cada molécula de NADh4 (tal como a de NADPh4) que inicia a cadeia respiratória produz 3 moléculas de ATP e que cada molécula de FADh4 produz 2 moléculas de ATP:
Na verdade estas cerca de 38000 calorias libertadas durante a respiração celular não correspondem á totalidade da energia libertada pela combustão da glicose mas apenas à quantidade de energia que a célula consegue armazenar sob a forma de ATP (cerca de 55% do total).
A restante energia é perdida durante o processo sob a forma de calor, o que ainda o torna o mais eficiente conhecido (a maioria dos carros, por exemplo, tem uma eficiência de cerca de 25%).
No entanto, a libertação de energia não é a única função da respiração pois nas suas reacções intermédias, especialmente no ciclo de Krebs, degradam-se macromoléculas em compostos menores, posteriormente utilizados na síntese de novas biomoléculas.
Rendimento energético da respiração
Inicialmente pensava-se que o ciclo de Krebs apenas explicava a degradação dos glícidos durante a respiração. Actualmente sabe-se que o ciclo também permite explicar a degradação de lípidos e prótidos, compostos usados igualmente na obtenção de energia pela célula.
No caso dos lípidos, estes são previamente degradados até produzirem acetilcoenzima A, enquanto os aminoácidos se incorporam directamente no ciclo de Krebs, sob a forma de moléculas com 2, 3 4 ou 5 átomos de carbono.
Integração de outros nutrientes na respiração
A fotossíntese fornece alimento a todas as formas de vida pois os organismos heterotróficos se alimentam directa ou indirectamente das moléculas orgânicas produzidas pelos autotróficos.
Outro importante contributo da fotossíntese é a produção de oxigénio, utilizado na respiração pela maioria dos organismos actuais. Praticamente todo o oxigénio da atmosfera terrestre tem origem fotossintética e pensa-se que é totalmente renovado, pelo mesmo processo, a cada 2000 anos.
A descoberta deste fenómeno fundamental para a vida na Terra é, apesar de tudo, bastante recente, tendo sido mencionado pela primeira vez em 1772 pelo inglês Priestley. Este bioquímico apercebeu-se que a introdução de uma planta num ambiente irrespirável melhorava rapidamente a qualidade do ar.
Em 1779 o holandês Ingen-Housz notou que para que as plantas "recuperassem" o ar necessitavam de luz e que essa "recuperação" se devia a um enriquecimento do ar em oxigénio. Iniciou-se aqui a ideia que as plantas decompunham o dióxido de carbono, libertando oxigénio, embora não fosse claro o destino do carbono excedente.
O mesmo Ingen-Housz propôs em 1796 que as plantas o utilizavam para fabricar as suas próprias moléculas orgânicas, sendo o oxigénio um subproduto dessas reacções. A partir deste momento, o mecanismo ficou baptizado fotossíntese (síntese em presença de luz de compostos orgânicos).
As complexas reacções da fotossíntese ocorrem nos cloroplastos, organitos semi-autónomos presentes nos seres autotróficos, e podem ser resumidas da seguinte forma:
Fotossíntese
energia luminosa + clorofila ----> (clorofila)*
6 CO2 + 12 h4O + (clorofila)* ----> C6h62O6 + 6 O2 + 6 h4O
Esta forma de resumir a fotossíntese, embora correcta, não revela a complexidade das reacções intermédias e dá a ideia (errada) de que o dióxido de carbono reage com a água.
Por volta de 1930, o investigador Van Niel propôs a hipótese que o oxigénio libertado na fotossíntese proviesse da água e não do dióxido de carbono, como antes se pensava. Dez anos mais tarde experiências com isótopos pesados de oxigénio comprovaram esse facto.
Outro tipo de experiências revelou que algumas das reacções da fotossíntese são fotoquímicas (realizam-se em presença de luz), enquanto outras são termoquímicas (realizam-se sem intervenção directa da luz). Assim, é regra dividir o processo em fase luminosa, que ocorre a nível dos grana do cloroplasto, e fase escura, cujas reacções decorrem no estroma.
Resumo do processo
A luz é constituída por "partículas luminosas", altamente energéticas, designadas fotões. A cor da luz é determinada pela energia dos fotões que a compõem (zona azul do espectro mais energia e zona vermelha do espectro menos energia).
Quando o electrão de um átomo é atingido por um fotão, pode absorver essa energia e ser impelido para uma orbital mais elevada (mais afastada do núcleo do átomo), dizendo-se que o átomo/molécula está num estado excitado.
Fase luminosa
No caso das reacções da fotossíntese, as principais moléculas envolvidas são as clorofilas. Quando moléculas de clorofila são atingidas por luz de cor azul e vermelha (fotões com determinada energia, portanto), alguns dos seus electrões passam a orbitais mais elevadas e a molécula fica excitada.
No entanto, a clorofila excitada é muito instável e ao fim de certo tempo os electrões regressam ás suas órbitas de origem - estado fundamental -, libertando a energia que absorveram do fotão, sob a forma de luz. Este fenómeno é conhecido pela fluorescência da clorofila. As clorofilas reflectem a luz verde, sendo esse o motivo porque as plantas são verdes.
Na maioria das células vegetais existem dois tipos de clorofila, a e b, sendo a clorofila b mais oxidada.
Fotossistemas
As moléculas de clorofila, receptores de electrões, pigmentos acessórios e enzimas participantes na fotossíntese estão organizadas nas membranas do cloroplastos em unidades designadas fotossistemas.
Cada fotossistema contém entre 250 a 400 moléculas de pigmentos e consiste em dois componentes intimamente associados: um centro de reacção (formado por um complexo proteína-pigmento) e um complexo antena.
Todas as moléculas de pigmentos do fotossistema são capazes de absorver fotões, mas apenas um par de moléculas de clorofila em cada fotossistema utiliza essa energia nas reacções fotoquímicas. Este par, localizado ao centro do fotossistema forma o centro de reacção, enquanto as restantes moléculas se designam pigmentos antena. Estes podem ser, além de clorofilas, carotenóides e ficobilinas (ficocianina azul e ficoeritrina vermelho).
Dentro dos fotossistemas, as moléculas de pigmentos estão ligadas a proteínas específicas e situadas em locais que permitem uma eficiente captação da energia luminosa. A energia absorvida por cada molécula é transferida á seguinte, até alcançar o centro de reacção. Quando ambas as clorofilas do centro de reacção absorvem energia, um dos seus electrões é excitado e transferido para a primeira molécula receptora, iniciando-se o fluxo de electrões necessário ás reacções fotoquímicas.
Existem dois tipos de fotossistemas
fotossistema I - também designado PS I, contém no seu centro de reacção uma forma de clorofila a designada P700, pois absorve luz de comprimento de onda de 700 nm. Localiza-se preferencialmente nas membranas intergrana, em contacto directo com o estroma do cloroplasto;
fotossistema II - também designado PS II, contém no seu centro de reacção uma forma de clorofila a designada P680 (clorofila b) pois absorve luz de comprimento de onda de 680 nm. Localiza-se nos tilacóides e procede á fotólise da água.
De modo geral, os fotossistemas funcionam simultaneamente mas o fotossistema I pode funcionar independentemente.
No interior da célula, a energia libertada pelo regresso do electrão á sua orbital original não é "perdida" sob a forma de luz mas sim captada por um conjunto de moléculas, sendo depois utilizada na síntese de moléculas de ATP e NADPh4, utilizadas nas reacções da fase escura.
A síntese destas moléculas implica dois tipos de reacções:
Fotofosforilação cíclica
Nesta reacção apenas intervém a clorofila a P700 e o fotossistema I. Ao receber luz de certo comprimento de onda, as moléculas de clorofila a excitam-se e os seus electrões (em vez de passarem a orbitais mais elevadas) saem da molécula, deixando-a oxidada. Os electrões excitados são captados pela ferredoxina (uma proteína contendo ferro) e daí vão passando por uma série de outras moléculas (flavinas, citocromos e vitamina K) que formam uma cadeia transportadora de electrões.
A passagem pela cadeia transportadora permite aos electrões libertar gradualmente a energia absorvida do fotão, permitindo que seja utilizada na energia química do ATP (sintetizado a partir de ADP e fosfato inorgânico). Por fim, o electrão já perdeu toda a energia e regressa ao estado fundamental e á clorofila a, voltando esta ao estado reduzido (não excitado).
Este ciclo repete-se de cada vez que a clorofila é atingida por um fotão. Aparentemente este processo de produção de ATP é uma via alternativa, ocorrendo apenas quando a quantidade de NADP é reduzida. Acredita-se que tenha sido este o método exclusivo de produção de ATP dos procariontes primitivos e as bactérias fotossintéticas ainda hoje o fazem. Como neste caso não existe fotólise da água, não há produção de oxigénio nem de NADPH, apenas de ATP;
Fotofosforilação acíclica
Nesta reacção já intervêm os dois tipos de clorofila a e, logo, ambos os fotossistemas. A molécula de clorofila P680 é excitada ao ser atingida por um fotão. Os seus electrões libertam-se e são captados por um receptor de electrões, a plastoquinona.
Dessa molécula, os electrões passam por outra cadeia transportadora de electrões, perdendo energia, que é utilizada na síntese de ATP a partir de ADP e fosfato inorgânico.
A última molécula dessa cadeia é uma clorofila P700 oxidada. Ao receber o electrão ficará, portanto, reduzida. No entanto, ao receber o estímulo de novo fotão, volta a perder o seu electrão excitado, que é passado à ferredoxina e dela para o NADP, que fica reduzido (NADP2-).
Assim, os electrões que saem da clorofila b não regressam a ela (daí a designação de acíclica). São, no entanto, repostos pela água, que funciona como ponto de partida deste fluxo de electrões. Este facto verifica-se pois ocorre fotólise da água, em presença de luz e clorofila:
2 h4O ---------> O2 + 4 H+ + 4 e-
O oxigénio produzido pela fotólise da água é eliminado para a atmosfera e os electrões vão substituir os electrões perdidos pela clorofila P680 durante a fotofosforilação acíclica, permitindo que regresse á sua forma reduzida. Os protões H+ são captados pelo NADP2-, originando NADPh4.
Fotólise da água
Na fase escura da fotossíntese ocorrem uma série de reacções com absorção e redução de dióxido de carbono, inversas da glicólise, com formação de compostos orgânicos (açúcares, aminoácidos, ácidos gordos, glicerol, etc.).
No decorrer desta fase há gasto de NADPh4 e ATP, formadas na fase luminosa, as quais se transformam em NADP e ADP e voltam ás reacções da fase luminosa.
Foram as experiências de Calvin, Bassham e Benson, entre 1954 e 1960, que permitiram determinar as diferentes etapas desta fase da fotossíntese.
Fase escura
Por esse motivo, a série de reacções que permitem a síntese de glicose a partir de dióxido de carbono, ATP e NADPh4 é conhecida por ciclo de Calvin-Benson ou ciclo das pentoses.
O ciclo das pentoses pode ser resumido da seguinte forma: uma molécula de dióxido de carbono é fixada num açúcar fosforilado, a ribulose 1,5-difosfato, originando um composto instável com 6 carbonos, que se decompõe imediatamente originando duas moléculas de ácido fosfoglicérico. A partir daqui decorrem as reacções inversas da glicólise que originam glicose e regeneram a ribulose 1,5-difosfato para que o ciclo recomece.
Atendendo a que por cada volta do ciclo de Calvin uma molécula de dióxido de carbono (logo um átomo de carbono) é reduzida (fixada), são necessárias 6 voltas do ciclo para se formar uma molécula como a de glicose.
O produto primário do ciclo de Calvin é o gliceraldeído 3-fosfato, a molécula transportada do cloroplasto para o citoplasma da célula. Esta é exactamente a mesma molécula produzida pela quebra da frutose 1,6-difosfato na glicólise.
A enzima ribulose 1,5-difosfato carboxilase, vulgarmente designada Rubisco, a enzima catalisadora da reacção inicial do ciclo de Calvin (fixação do dióxido de carbono na ribulose) é muito abundante nos cloroplastos, correspondendo a mais de 15% do seu conteúdo proteico total. É, por este motivo, considerada por muitos bioquímicos a proteína mais abundante do mundo.
Assim, os fenómenos da fotossíntese podem ser resumidos, considerando apenas os produtos iniciais e finais, da seguinte forma:
O destino dos produtos finais da fotossíntese é variado, dependendo do organismo e das suas necessidades imediatas. Podem ser utilizados na respiração celular, fornecendo energia aos processos vitais ou podem ser convertidos em moléculas orgânicas de vários tipos.
Embora a glicose seja a molécula representada nas equações reduzidas da fotossíntese, a quantidade de glicose livre produzida nas células fotossintéticas é muito baixa. A maioria do carbono fixado é convertido preferencialmente em sacarose, o glícido de transporte, ou em amido, o glícido de reserva, das plantas.
O gliceraldeído 3-fosfato que é transportado para o citoplasma da célula é utilizado para formar glicose 1-fosfato, percursor imediato da sacarose. Pelo contrário, o gliceraldeído 3-fosfato que permanece nos cloroplastos, passa a amido, armazenado sob a forma de grânulos no estroma. Durante a noite, a glicose do amido é exportada para o citoplasma.
Destino dos produtos da fotossíntese
A taxa fotossintética é influenciada por diversos factores ambientais, nomeadamente: Factores que influenciam a fotossíntese
Intensidade luminosa - se as outras condições se mantiverem constantes, verificou-se experimentalmente que o aumento da intensidade luminosa provoca um correspondente aumento na taxa fotossintética. No entanto, tal apenas se verifica até certo ponto, o chamado ponto de saturação luminosa;
Intensidade luminosa
Concentração de dióxido de carbono - em condições uniformes de luminosidade e temperatura, o aumento da quantidade de dióxido de carbono disponível provoca, até um certo limite, o aumento da taxa fotossintética;
Concentração de CO2
Temperatura - o aumento da temperatura causa um acentuado aumento da taxa fotossintética em presença de alta intensidade luminosa mas rapidamente esse aumento começa a desnaturar as enzimas causando uma quebra na taxa de fotossíntese e, eventualmente, a morte do organismo.
Fonte: curlygirl.no.sapo.pt