Tecnologia do Blogger.
Mostrando postagens com marcador Reinos. Mostrar todas as postagens
Mostrando postagens com marcador Reinos. Mostrar todas as postagens

22 de fev. de 2012

Reino MONERA


Reino Monera

O reino monera é formado por bactériascianobactérias e arqueobactérias (também chamadas arqueas), todos seres muito simples, unicelulares e com célula procariótica (sem núcleo diferenciado). Esses seres microscópios são geralmente menores do que 8 micrômetros ( 1µm = 0,001 mm).
As bactérias (do grego bakteria: 'bastão') são encontrados em todos os ecossistemas da Terra e são de grande importância para a saúde, para o ambiente e a economia. As bactérias são encontradas em qualquer tipo de meio: mar, água doce, solo, ar e, inclusive, no interior de muitos seres vivos.
Exemplos da importância das bactérias:
  • na decomposição de matéria orgânica morta. Esse processo é efetuado tanto aeróbia, quanto anaerobiamente;
  • agentes que provocam doença no homem;
  • em processos industriais, como por exemplo, os lactobacilos, utilizados na indústria de transformação do leite em coalhada;
  • no ciclo do nitrogênio, em que atuam em diversas fases, fazendo com que o nitrogênio atmosférico possa ser utilizado pelas plantas;
  • em Engenharia Genética e Biotecnologia para a síntese de várias substâncias, entre elas a insulina e o hormônio de crescimento.

Estrutura das Bactérias
Bactérias são microorganismos unicelulares, procariotos, podendo viver isoladamente ou construir agrupamentos coloniais de diversos formatos. A célula bacterianas contém os quatro componentes fundamentais a qualquer célula: membrana plasmática, hialoplasma, ribossomos e cromatina, no caso, uma molécula de DNA circular, que constitui o único cromossomo bacteriano.
A região ocupada pelo cromossomo bacteriano costuma ser denominada nucleóide. Externamente à membrana plasmática existe uma parede celular (membrana esquelética, de composição química específica de bactérias).
É comum existirem plasmídios - moléculas de DNA não ligada ao cromossomo bacteriano - espalhados pelo hialoplasma. Plasmídios costumam conter genes para resistência a antibióticos.

 

Algumas espécies de bactérias possuem, externamente à membrana esquelética, outro envoltório, mucilaginoso, chamado de cápsula. É o caso dos pneumococos (bactérias causadoras de pneumonia). Descobriu-se que a periculosidade dessas bactérias reside na cápsula em um experimento, ratos infectados com pneumococo sem cápsula tiveram a doença porém não morreram, enquanto pneumococos capsulados causaram pneumonia letal.
A parede da célula bacteriana, também conhecida como membrana esquelética, reveste externamente a membrana plasmática, e é constituída de uma substância química exclusiva das bactérias conhecida comomureína (ácido n-acetil murâmico).
 A Diversidade Metabólica das Bactérias

Se há um grupo de seres que apresenta grande diversidade metabólica, certamente é o das bactérias. Existem espécies heterótrofas e espécies autótrofas. Dentre as primeiras, destacam-se as parasitas, as decompositoras de matéria orgânica e as que obtêm matéria orgânica de outros seres vivos, com os quais se associam sem prejudicá-los. Dentre as autótrofas, existem espécies que produzem matéria orgânica por fotossíntese e outras que produzem por quimiossíntese.

As bactérias Heterótrofas
As bactérias parasitas são as que, por meio de inúmeros mecanismos, agridem outros seres vivos para a obtenção de alimento orgânico e causam inúmeras doenças. As decompositoras (frequentemente denominadas sapróvoras, saprofíticas ou saprofágicas) obtêm o alimento orgânico recorrendo à decomposição da matéria orgânica morta e são importântes na reciclagem dos nutrientes minerais na biosfera.
As que são associadas as outros seres vivos são denominadas de simbiontes, e não agridem os parceiros. É o caso das bactérias encontradas no estômago dos ruminantes (bois, cabras), que se nutrem da celulose ingerida por esses animais, fornecendo, em troca, aminoácidos essenciais para o metabolismo protéico do mesmo.
Muitas bactérias heterótrofas são anaeróbias obrigatórias, como o bacilo do tétano. São bactérias que morrem na presença de oxigênio. Nesse caso a energia dos compostos orgânicos é obtida por meio de fermentação. As anaeróbicas facultativas, por outro lado, vivem tanto na presença como na ausência de oxigênio.
Outras espécies só sobrevivem em presença de oxigênio - são as aeróbias obrigatórias. Um curioso grupo de bactérias é o que realiza a respiração aeróbia. Nessa modalidade de metabolismo energético existem todas as etapas típicas da respiração celular. Muda apenas o aceptor final de elétrons na cadeia respiratória. No lugar do oxigênio, essas bactérias utilizam nitrato, nitrito ou sulfato, obtendo no final, praticamente o mesmo rendimento energético verificado na respiração celular aeróbia. É o que ocorre com as bactérias desnitrificantes que participam do ciclo do nitrogênio na natureza. Nelas o aceptor final de elétrons é o nitrato.

Bactérias Autótrofas

Fotossintetizantes
Nas bactérias que realizam fotossíntese, a captação da energia solar fica a cargo de uma clorofila conhecida como bacterioclorofila. A partir da utilização de substâncias simples do meio, ocorre a síntese do combustível biológico. De maneira geral, não há liberação de oxigênio. Como exemplo, podemos citar as bactérias sulforosas do gênero Chlorobium, que efetuam esse processo com a utilização de H2S e CO2, segundo a equação:
2H2S + CO2 + luz ------bacterioclorofila------------> (CH2) + 2S + H20

Note que é o gás sulfídrico, e não a água, que atua como fornecedor dos hidrogênios que servirão para a redução do gás carbônico. Não há a liberação de oxigênio. O enxofre permanece no interior  das células bacterianas sendo, posteriormente eliminado para o meio em que vivem esses microorganismos, em geral fontes sulfurosas. Nesse processo, CH2O representa a matéria orgânica produzida.

Quimiossíntese
A quimiossíntese é uma reação que produz energia química, convertida da energia de ligação dos compostos inorgânicos oxidados. Sendo a energia química liberada, empregada na produção de compostos orgânicos e gás oxigênio (O2), a partir da reação entre o dióxido de carbono (CO2) e água molecular (H2O), conforme demonstrado abaixo:

- Primeira etapa
Composto Inorgânico + O2 → Compostos Inorgânicos oxidados + Energia Química
- Segunda etapa
CO2 + H2O + Energia Química → Compostos Orgânicos + O2

Esse processo autotrófico de síntese de compostos orgânicos ocorre na ausência de energia solar. É um recurso normalmente utilizado por algumas espécies de bactérias e arqueobactérias (bactérias com características primitivas ainda vigentes), recebendo a denominação segundo os compostos inorgânicos reagentes, podendo ser: ferrobactérias e nitrobactérias ou nitrificantes (nitrossomonas e nitrobacter, gênero de bactérias quimiossíntetizantes).

As ferrobactérias oxidam substâncias à base de ferro para conseguirem energia química, já asnitrificantes, utilizam substâncias à base de nitrogênio.

Presentes no solo, as nitrossomonas e nitrobacter, são importantes organismos considerados biofixadores de nitrogênio, geralmente encontradas livremente no solo ou associadas às plantas, formando nódulos radiculares.

A biofixação se inicia com a assimilação no nitrogênio atmosférico (N2), transformando-o em amônia (NH3), reagente oxidado pela nitrossomona, resultando em nitrito (NO2-) e energia para a produção de substâncias orgânicas sustentáveis a esse gênero de bactérias.

O nitrito, liberado no solo e absorvido pela nitrobacter, também passa por oxidação, gerando energia química destinada à produção de substâncias orgânicas a esse gênero e nitrato (NO3-), aproveitado pelas plantas na elaboração dos aminoácidos.

Reação quimiossintética nas Nitrossomonas: 
NH3 (amônia) + O2 → NO2- (nitrito) + Energia

6 CO2 + 6 H2O + Energia → C6H12O6 (Glicose - Compostos Orgânicos) + 6 O2

Reação quimiossintética nas Nitrobacter:
NO2- (nitrito) + O2 → NO3- (nitrato) + Energia

6 CO2 + 6 H2O + Energia → C6H12O6 + 6 O2

Assim, podemos perceber que o mecanismo de quimiossíntese, extremamente importante para a sobrevivência das bactérias nitrificantes, também é bastante relevante ao homem. Conforme já mencionado, o nitrito absorvido pelas plantas, convertidos em aminoácidos, servem como base de aminoácidos essenciais à nutrição do homem (um ser onívoro: carnívoro e herbívoro).

Dessa forma, fica evidente a interdependência existente entre os fatores bióticos (a diversidade dos organismos) e os fatores abióticos (aspectos físicos e químicos do meio ambiente).

 Reprodução das Bactérias
A reprodução mais comum nas bactérias éassexuada por bipartição oucissiparidade. Ocorre a duplicação do DNA bacteriano e uma posterior divisão em duas células. As bactérias multiplicam-se por este processo muito rapidamente quando dispõem de condições favoráveis (duplica em 20 minutos).
A separação dos cromossomos irmãos conta com a participação dos mesossomos, pregas internas da membrana plasmática nas quais existem também as enzimas participantes da maior parte da respiração celular.
 
Repare que não existe a formação do fuso de divisão e nem de figuras clássicas e típicas da mitose. Logo,não é mitose.


Esporulação
Algumas espécies de bactérias originam, sob certas condições ambientais, estruturas resistentes denominadas esporos. A célula que origina o esporo se desidrata, forma uma parede grossa e sua atividade metabólica torna-se muito reduzida. Certos esporos são capazes de se manter em estado de dormência por dezenas de anos. Ao encontrar um ambiente adequado, o esporo se reidrata e origina uma bactéria ativa, que passa a se reproduzir por divisão binária.
Os esporos são muito resistentes ao calor e, em geral, não morrem quando expostos à água em ebulição. Por isso os laboratórios, que necessitam trabalhar em condições de absoluta assepsia, costumam usar um processo especial, denominado autoclavagem, para esterilizar líquidos e utensílios. O aparelho onde é feita a esterilização, a autoclave, utiliza vapor de água a temperaturas da ordem de 120ºC, sob uma pressão que é o dobro da atmosférica. Após 1 hora nessas condições, mesmo os esporos mais resistentes morrem.
A indústria de enlatados toma medidas rigorosas na esterilização dos alimentos para eliminar os esporos da bactéria Clostridium botulinum. Essa bactéria produz o botulismo, infecção frequentemente fatal.

Reprodução sexuada
Para as bactérias considera-se reprodução sexuada qualquer processo de transferência de fragmentos de DNA de uma célula para outra. Depois de transferido, o DNA da bactéria doadora se recombina com o da receptora, produzindo cromossomos com novas misturas de genes. Esses cromossomos recombinados serão transmitidos às células-filhas quando a bactéria se dividir.
A transferência de DNA de uma bactéria para outra pode ocorrer de três maneiras: por transformação,transdução e por conjugação.

Transformação
Na transformação, a bactéria absorve moléculas de DNA dispersas no meio e são incorporados à cromatina. Esse DNA pode ser proveniente, por exemplo, de bactérias mortas. Esse processo ocorre espontaneamente na natureza.
Os cientistas têm utilizado a transformação como uma técnica de Engenharia Genética, para introduzir genes de diferentes espécies em células bacterianas.


Transdução
Na transdução, moléculas de DNA são transferidas de uma bactéria a outra usando vírus como vetores (bactériófagos). Estes, ao se montar dentro das bactérias, podem eventualmente incluir pedaços de DNA da bactéria que lhes serviu de hospedeira. Ao infectar outra bactéria, o vírus que leva o DNA bacteriano o transfere junto com o seu. Se a bactéria sobreviver à infecção viral, pode passar a incluir os genes de outra bactéria em seu genoma.



Conjugação
Na conjugação bacteriana, pedaços de DNA passam diretamente de uma bactéria doadora, o "macho", para uma receptora, a "fêmea". Isso acontece através de microscópicos tubos protéicos, chamados pili, que as bactérias "macho" possuem em sua superfície.
O fragmento de DNA transferido se recombina com o cromossomo da bactéria "fêmea", produzindo novas misturas genéticas, que serão transmitidas às células-filhas na próxima divisão celular.

13 de abr. de 2011

Reino Protista


Os organismos unicelulares eucariontes, representados pelos protozoários - como amebas e paramécios - e certas algas unicelulares - como euglenafíceas, pirrofíceas e crisofíceas -, constituem o reino Protista. Sendo eucarionte, os protista são portados de núcleo individualizado - delimitado por membrana nuclear denominada carioteca e de organelas citoplasmáticas bem definidas. Essas características permitem a distinção entre protista e moneras. Protozoários (filo Protozoa) Os protozoários são eucariontes unicelular desprovidos de clorofila, que vivem isolados ou formando colônias, nos mais variados tipos de hábitat. Podem ser aeróbicos ou anaeróbicos e exibir vida livre ou associar-se a outros organismos. Neste último caso, alguns se comportam como simples comensais, isto é, sem causar danos se alojam no organismo hospedeiro, nutrindo-se de seus restos alimentares. É o caso da Entamoeba coli, protozoário comensal que pode ser encontrado no intestino humano. Outros se comportam como mutualísticos, isto é, estabelecem com o hospedeiro uma relação de benefícios mútuos; é o caso do Trichonympha collaris, que vive no intestino de cupins, onde promove a digestão da celulose, auxiliando assim a nutrição desses animais; em troca, o protozoário encontra no inseto alimento e hábitat adequado para sua sobrevivência. Alguns atuam como parasitas do homem e de outros seres vivos. Os protozoários são microscópicos, mas existem exceções que podem ser visualizadas a olho nu, como o Spirostomum, que mede cerca de 5 milímetros de comprimento. Classificação dos protozoários Os protozoários podem ser fixos ou se deslocar através de cílios, flagelos ou pseudopodes. De acordo com o tipo e a presença ou não dessas organelas locomotoras, os protozoários classificam-se em: Rizópodes ou sarcodíneos - locomovem-se através de pseudópodes Flagelados ou mastigóforos - locomovem-se de flagelos Ciliados - locomovem-se através de cílios Esporozoários - desprovidos de organelas locomotoras. Rizópodes ou sarcodíneos As amebas são os principais representantes dos rizópodes, protozoários que se deslocam e se alimentam através de pseudópodes. A maioria é de vida livre, podendo ser marinhas ou dulcícolas (de água doce, como rios, represas, poças, tanques, lodo e mesmo terra úmida). A emissão de pseudópodes permite a locomoção e a captura de alimento por parte das amebas. Ao detectarem a presença de um alimento qualquer, como algas ou protozoários menores, as amebas deslocam-se até ele englobando-o com seus pseudópodes, fenômeno conhecido por fagocitose. Nas amebas dulcícolas, além das organelas comuns de uma célula típica, constata-se a presença de um vacúolo denominado contrátil ou pulsátil. Considerando a Amoeba proteus, uma ameba comum de água doce, verifica-se que seu fluído citoplasmático é hipertônico em relação ao meio onde viva. Isso determina um fluxo de água, por osmose, do meio ambiente para p interior da célula. Esse fluxo, sem dúvida, acabaria por promover a ruptura celular, não fosse a atividade reguladora do vacúolo pulsátil. De fato, esse vacúolo recolhe o excesso de água que penetrou na célula e, através de movimentos de pulsação, elimina essa água para o meio externo. Nas amebas marinhas - cujo habitat não apresenta esse tipo de problema, já que a concentração salina da água é semelhante à concentração do fluído citoplasmático desses protozoários - o vacúolo pulsátil seria funcionalmente inativo, o que justifica a ausência dessa organela em tais protozoários. A Entamoeba histolytica vive no intestino humano, onde atua como parasita. Essa ameba pode ser adquirida através da ingestão de cistos, formas resistentes que surgem condições ambientais inadequadas, presentes em água e alimentos contaminados. No intestino grosso, o cisto é dissolvido através de enzimas, e a Entamoeba histolytica prende-se então à parede intestinal atingindo capilares sangüíneos, fagocitando glóbulos vermelhos (hemácias) para nutrir-se. Surgem ulcerações intestinais e diarréias, quadro clinica básico da disenteria amebiana. Caso a ameba consiga atravessar a parede intestinal, pode, através da corrente sangüínea, alojar-se em órgãos como pulmões, fígado e cérebro, provocando graves lesões que identificam o quadro clínico da amebíase. A profilaxia da amebíase é de difícil execução, pois não depende apenas do tratamento da matéria fecal e do lixo, mas também da proteção da água potável e dos alimentos, da higiene pessoal e principalmente da educação sanitária. Mesmo em países ricos e de higiene pública adequada, como os Estados Unidos, aparece grande número de pessoas contaminadas.Portanto em países do Terceiro Mundo, como o Brasil, Peru e Colômbia, as dificuldades para uma profilaxia são ainda maiores. Nos grandes centros urbanos , a amebíase, um grave problema sanitário, agrava-se e deve ser combatida principalmente com a distribuição da rede de esgoto para toda a cidade e com o tratamento do lixo. É sempre fundamental o uso de instalações sanitárias adequados, tratamento de água, higiene pessoal e lavagem cuidadosa dos alimentos, sobretudo frutas e verduras, e uma grande campanha de educação sanitária que atinja toda a população. Ciliados São protozoários portadores de cílios que se prestam à locomoção e captura de alimentos. Os ciliados são considerados os protozoários mais especializados pois apresentam muitas organelas, que garantem a realização dos mais diversos vitais. Abundantes em água doce e salgada, exibem vida ou associada a outros seres vivos. Os ciliados são muito utilizados em experimentos diversos, uma vez que apresentam porte relativamente grande e sua criação é fácil. Os mais conhecidos pertencem ao gênero Paramecium, em que se destacam as espécies Paramecium aurelia e Paramecium caudatum. Para descrição do grupo, utilizaremos os ciliados do gênero Paramecium. Enquanto as amebas obtêm seu alimento por fagocitose, através de qualquer parte da superfície celular, os ciliados alimentam-se por meio de uma depressão da superfície, denominada sulco oral. No final do sulco oral existe uma estrutura chamada citóstoma ("boca" da célula). O movimento dos cujos provoca turbilhonamento na água, que facilita a penetração de uma eventual partícula alimentar no sulco oral; o alimento atravessa então o citóstoma e penetra numa região denominada citofaringe. No final da citofaringe o alimento é definitivamente adquirido pelo paramécio formando um vacúolo digestivo. Após a digestão e absorção do nutrientes, os digestivos são eliminados para o através de um poro denominado citopígeo ou citoprocto. Há ainda um vacúolo pulsátil, que elimina o excesso de água. O Balantidium coli, outro tipo de ciliado, é o maior protozoário que parasita o homem, sendo causador de disenteria. Embora não ocasione lesões graves no organismo hospedeiro, muitos casos podem apresentar sintomas tão semelhantes ao da disenteria amebiana que o diagnostico apenas se torna claro pela identificação do balantídio nas fezes do indivíduo infectado. Seus hospedeiro naturais são o porco, o cavalo, o macaco e o rato selvagem, sendo que no porco não aparecem o sintomas de infecção. Pois com este animal o balantídio desenvolve exclusivamente uma relação de comensalismo, alimentado-se apenas do conteúdo intestinal, rico em substâncias amiláceas (que contem amido) . A transmissão ao homem se dá principalmente pela ingestão de cistos do protozoário, através de alimento ou água contaminada tanto por portadores da infecção como por fezes de animais com balantídio. A prevenção é basicamente a mesma indicada para a Entamoeba histolytica. Esporozoários Os esporozoários são protozoários parasitas desprovidos de organelas de locomoção e vacúolos pulsáteis. Entre as doenças causadas por esses microorganismos, citamos a malária humana e a coccidiose em aves e coelhos. A malária é causada por esporozoários do gênero Plasmodium, que são inoculados no homem através da picada das fêmeas do gênero Anopheles, infectadas. Quando o mosquito (transmissor ou vetor) pica um indivíduo, injeta-lhe um pouco de saliva que contem substâncias anticoagulares. Caso o mosquito esteja infectado, juntamente com a saliva são injetados esporos infestantes dos plasmódios. Esses esporos alcançam a corrente sangüínea do homem e se instalam em órgãos diversos, como o fígado e o baço, onde ficam inoculados por vários dias. Após o período de incubação, os esporos retornam à corrente sangüínea e penetram nas hemácias, onde se reproduzem assexuadamente. As hemácias então se rompem e liberam para o sangue novos plasmódios, que passam a infectar novas hemácias sadias, repetindo-se o processo. O ataque de frio e febre observado nas pessoas doentes coincide com a liberação dos plasmódios infestantes e parece da ação de substâncias tóxicas no sangue, liberadas por ocasião da ruptura das hemácias infestadas. Depois de algumas gerações, certos plasmódios transformaram-se em formas sexuadas denominadas gametócitos. Essas formas poderão ser adquiridas pelo mosquito, ao sugar o sangue de um novo indivíduo doente. No interior do tubo digestivo do inseto, os gametócitos completam seu desenvolvimento e se transformam em gametas, que originam zigotos. Cada zigoto produz muitos plasmódios, que acabam se instalando nas glândulas salivares do Anopheles e podem ser transmitidos a outras pessoas sadias, recomeçando o ciclo. O ciclo evolutivo do Plasmodium compreende, portanto, duas fases: Fase assexuada Ocorre no interior das hemácias; por alojar a fase assexuada, o homem é considerado hospedeiro intermediário Fase sexuada Ocorre no tubo digestivo do mosquito, que é então considerado hospedeiro definitivo. Fonte: www.iesambi.org.br

Algas


Existem duas categorias de algas de interesse para o aquariófilo: "boas" e "más". As consideradas boas estão presentes em pequenas quantidades, o que é indicativo de boa qualidade de água e são facilmente controladas quer por peixes que as consumam quer pela simples remoção durante as rotinas de manutenção. Estas algas são a consequência natural de possuir água com nutrientes e uma fonte de luz. As algas consideradas más, são ou um indicador de má qualidade de água ou trata-se de um tipo de alga que tomou o aquário de assalto arruinando a estética que o aquariófilo pretendia atingir. O rótulo de "más" é completamente subjectivo. Por exemplo, um tipo de alga verde com aspecto de cabelo, é considerada uma praga por aquariófilos Americanos mas é cultivada por aquariófilos Europeus como sendo um valioso suplemento alimentar para os peixes.

Tipos de Algas
Azuis-verdes, cianobactérias, algas pegajosas
Crescem rapidamente em camadas viscosas azuis-verdes. Espalham-se depressa por todo o lado, muitas vezes têm um cheiro intenso e indicam em geral má qualidade de água. No entanto, as algas azuis-verdes podem fixar azoto e podem ser vistas em aquários com nitratos extremamente baixos. Por vezes vistas em pequenas quantidades entre o areão e os vidros do aquário. Acabam por sufocar as plantas e matá-las.

Tratam-se na realidade de cianobactérias. E podem ser fisicamente removidas, mas não se trata de uma solução a longo prazo uma vez que as condições no aquário permanecem as mesmas e elas voltam a surgir de novo e em força. Um tratamento com 200 mg de fosfato de eritromicina para 40 litros de água elimina em geral as cianobactérias, alguns especialistas acham que poderá ter efeitos adversos para o filtro biológico. Se a eritromicina for usada os níveis de amónia e nitritos devem ser monitorizados.

Algas Castanhas
Formam grupos de manchas acastanhadas macias. Nos aquários de água doce estas algas são em geral diatomáceas. Geralmente a sua presença indica falta de luz ou excesso de silicatos. Aumentar os níveis de luminosidade faz em geral com que estas desapareçam. Retiram-se facilmente limpando o vidro, ou sifonando a área afectada.

Água Verde
As algas verdes unicelulares podem por vezes reproduzir-se tão depressa que a água torna-se verde. Ao que se dá o nome geral de "estoiro" de algas, e é causado regra geral por uma grande intensidade de luz como a luz solar.

Um "estoiro" de algas pode ser removido filtrando a água por uma rede (malha em microns) ou através de filtros de diatomite. Uma esterilização da água por meio de ultra violetas pode evitar que isto suceda em primeiro lugar. A água verde é bastante útil para o cultivo de dáfnias e artémia.

Algas em camada
Crescem no vidro do aquário, dando origem a um aspecto enevoado quando se olha para através do vidro. Removem-se facilmente limpando o vidro. São uma ocorrência normal quando existem níveis elevados de luminosidade para um bom crescimento das plantas.

Algas em forma de pontos
Crescem sob uma forma circular, delgada, intrincada, de verde pálido, geralmente no vidro do aquário mas também sobre as plantas. São uma consideradas uma ocorrência normal em aquários plantados. Têm de ser mecanicamente removidas. Em aquários de acrílico usar um pano suave tipo almofada de maquilhagem e esfregar arduamente. Em aquários de vidro, os raspadores de lâmina são mais eficientes.

Algas Algodão
Crescem regra geral nas folhas de plantas, como pequenos fios (2-3 mm). São consideradas uma ocorrência normal. Podem ser uma forma menos "virulenta" das algas tipo barba. Controladas facilmente através de peixes comedores de algas como a Mollie Negra. Otocinclus, Peckoltia e comedores de algas siameses.

Algas em forma de barba
Crescem sobre as folhas das plantas e são de um verde pálido. Os fios possuem individualmente uma textura muito delicada, mas juntos crescem como manchas espessas assemelhando-se a uma barba verde. Crescem até aos 4 cm. Não podem ser removidas mecanicamente. Também não indicam má qualidade de água, mas crescem muito depressa espalhando-se por todo o aquário tornado-as algas "más". Podem ser eliminadas com Simazina ("Algae Destroyer" da Aquarium Pharmaceuticals).

Algas em forma de cabelos
Crescem em agregados de uma cor verde viva no areão, à volta da base de plantas como o Echinodorus e à volta de objectos mecânicos. Têm uma textura mais áspera que as em forma de barba. Estas últimas agitam-se na corrente de água, enquanto que as em forma de cabelos têm a tendência de se entrelaçarem formando um aglomerado. Individualmente cada alga deste tipo pode atingir 5 ou mais centímetros. São fáceis de remover mecanicamente enrolando-as com uma escova de dentes. Podem tornar-se difíceis de limpar se permanecerem muito tempo sem serem detectadas. Constítuem um suplemento alimentar para os peixes utilizadas pelos aquariófilos Europeus.

Algas filamentosas
Crescem sob a forma de filamentos delgados e compridos até 30 ou mais centímetros. A sua cor é esverdeada (embora seja difícil de distinguir por serem filamentos muito finos). Indicam em geral um excesso de ferro (> 0.15 ppm). Removem-se facilmente com uma escova de dentes tal como nas em forma de cabelos.

Algas em forma de chifre
Parecem-se com fios individuais semelhantes aos das algas filamentosas, mas tendem a crescer ramificadamente dando origem a uma estrutura tipo que se assemelha a um chifre de veado e são cinzentas- esverdeadas. Crescem na sua maioria sobre peças de equipamento dos aquários à superfície. São difíceis de remover mecanicamente. Colocar as peças de equipamento afectado num recipiente com uma solução de 25% de lixívia e água.

Algas em forma de escova
Crescem dando origem a tufos negros tipo penas (de 2-3 mm de comprimento), regra geral sobre as folhas de crescimento lento de plantas como as Anubias, alguns Echinodorus, e outras. Também podem surgir em equipamento mecânico. Trata-se na realidade de uma alga vermelha do género Audouinella (outros nomes: Acrochaetium, Rhodochorton, Chantransia). Não são fáceis de remover mecanicamente. Devem-se remover e deitar fora as folhas das plantas afectadas. O equipamento pode ser mergulhado numa solução de 25% de lixívia e água, e depois escovado para retirar as algas mortas. Os Comedores de Algas Siameses (SAE) (Crossocheilus siamensis) custumam alimentar-se desta alga podendo assim controlá-la. Uma medida mais drástica é o tratamento com cobre.

Profiláticos para as algas
Os esporos das algas estão em todo o lado e poderão estar sempre presentes num aquário, a não ser que se tomem algumas medidas drásticas. Para aquários só com peixes, um conjunto de ultra violetas correctamente montado para desinfecção, matará os esporos de algas existentes e previnirá o seu ressurgimento.

Para aquários plantados, isto não é uma boa solução uma vez que a luz ultravioleta irá oxidar também alguns oligoelementos necessários às plantas limitando assim o potencial crescimento destas. Infelizmente, condições que são boas para o crescimento de plantas são-no também para as algas. Felizmente, as plantas ganham regra geral na competição pelos nutrientes disponíveis com as algas. No entanto, se existe um desequilíbrio com os nutrientes, as algas oportunisticamente usam tudo aquilo que não é usado pelas plantas superiores. Diferentes algas usam diferentes nutrientes, causando explosões esporádicas de novos tipos de algas em aquários aparentemente estáveis quando um desequílibrio temporário ocorre.

Uma grama de prevenção vale um quilo de cura. Para evitar a introdução de um novo tipo de alga num aquário plantado através de plantas novas, um mergulho rápido em lixívia destas parece funcionar bem. Misturar 1 parte de lixívia para 19 partes de água e mergulhar as plantas nesta solução por 2 minutos. Lavar bem a planta logo de seguida com água corrente, depois imergi-las novamente em água com anti-cloro para neutralizar e remover a lixiva. Isto matará as algas e apenas retardará o crescimento duma planta saudável. Plantas em más condições podem sucumbir a este tratamento, mas de qualquer forma não aguentavam mesmo sem ele.

Peixes limpadores de algas
O controle mais eficaz de algas num aquário plantado é através de peixes que consumam algas. Isto é especialmente crítico na instalação de um novo aquário, deve-se certificar que as algas não se instalam antes das plantas terem a chance de se instalarem devidamente. Por esta razão e para ajudar o filtro biológico, é recomendado que alguns peixes resistentes que consumam algas sejam colocados logo de início.

Mollies negras
As Mollies negras de vela são excelentes candidatos para o período inicial de um aquário plantado pois são fáceis de encontrar e baratas. São regra geral consideradas dispensáveis e podem ser removidas passado 1 mês ou mais. É importante NÃO ALIMENTA-LAS. Se forem, não ficarão tão ávidas para comer algas. Quando estão com fome, são ávidas consumidoras da maioria dos tipos de alga que surgem durante o período inicial.

Otocinclus sp.
Os Otocinclus são diligentes consumidores de algas, mas é melhor mantê-los em cardume devido ao seu pequeno tamanho. Um para 40 litros é uma boa regra práctica. Várias espécies deste género podem ser vistas nas lojas de tempos a tempos; a maioria são bons comedores de algas mas outros parecem preferir o muco de outros peixes às algas. Infelizmente, parece não existir forma de distinguir os "Otocinclus de ataque" dos normais.

Os Otocinclus parecem ser peixes delicados, mas isto deve-se provavelmente aos abusos na captura e transporte do que propriamente ao facto de serem frágeis em si. Quando uma loja adquire novos exemplares, é bom esperar um pouco antes de os comprar de forma a restarem os mais resistentes. Muitas pessoas afirmam terem comprado uma dúzia deles até ficarem com apenas um par no espaço de poucos meses. Esses sim depois parecem durar muito tempo.

Plecostomus'' sp.
Plecostomus é o nome genérico para uma larga variedade de peixes com a boca em forma de ventosa. Apenas as espécies mais pequenas são úteis num aquário plantado, uma vez que as maiores além das algas comem também as plantas. Dois dos géneros mais úteis são os Ancistrus sp. e Peckoltia sp. Ambos ficam abaixo dos 10 cm de comprimento e parece não provocarem grandes danos às plantas. Por vezes plantas de folha larga como os Echinodorus são mordiscadas por eles, tendo de se ter atenção a esse facto.
A sua dieta pode ser suplementada com zucchini cortado aos pedaços e tabletes para peixes de fundo. Também apreciam troncos no aquário para satisfazer as suas necessidades por celulose. Ver a FAQ Peixes para Principiantes para mais informação sobre peixes-gato com boca em forma de ventosa.

Comedor de Algas Siamês
Crossocheilus e Epalzeorhynchos, não confundir estes peixes comedor de algas chinês, também conhecido por limpa-vidros, o qual em adulto é muito agressivo e deixa de comer algas. O Comedor de Algas Siamês, Crossocheilus siamensis, é muito boa para comer algas e conhecido por comer algas vermelhas. O único problema é que este peixe é difícil de encontrar à venda. Há 2 espécies comuns nesta família. A mais comum é a Epalzeorhynchos kallopterus, vulgamente chamada Raposa Voadora. Esta espécie é a mais atractiva das duas. Tem um corpo acastanhado com uma faixa negra bem distinta, com uma outra mais fina e acima dourada ou cor de bronze. As Raposas Voadoras tendem a ser muito agressivas à medida a que crescem e que se saiba não consomem algas vermelhas.

O comedor de algas siamês é da mesma forma que a espécie precedente mas o seu corpo tende mais para o prateado com uma faixa negra não muito perfeita. Pode haver também uma outra por cima não muito bem definida dourada ou cor de bronze. Estes não são de todo agressivos; sendo bons companheiros de Discus ou Tetras.

Quando são jovens, as diferenças entre o E. Kallopterus e o C. Siamensis podem não ser muito aparentes, especialmente se nunca se viram as duas espécies juntas. Infelizmente, a maioria dos vendedores não vendem os peixes nas suas lojas pelo seu nome científico e o nome vulgar é por vezes bastante pateta (como "raposa voadora siamesa"). Se não se souber qual das espécies a loja tem pode comprar o peixe à mesma, no entanto deve estar preparado para lhe encontrar um novo lar caso seja o errado (a menos que os peixes que se possua com ele o tolerem).

Farlowella
São bons consumidores de algas embora sejam muito sensíveis à qualidade de água. Uma das espécies (Farlowella gracilis) ficará muito grande para um aquário plantado e pode causar danos.

Fonte: faq.thekrib.com

16 de jun. de 2010

Aves


Aves

As aves (l. avis) são animais facilmente reconhecíveis, pois são animais comuns e diurnos. A sua coloração e canto chamam a atenção humana e muitas fazem parte da nossa alimentação regular.

Em consequência da sua adaptação ao voo, as aves são muito mais parecidas entre si que os animais das restantes classes tetrápodes. A forma geral do corpo é fusiforme, oferecendo uma resistência mínima ao ar.

O seu revestimento corporal de penas é único e característico, isolando o corpo e permitindo não só o voo mas também a regulação de temperatura. O voo, por sua vez, permitiu ás aves ocuparem nichos ecológicos negados a outros animais, como as regiões árcticas.

A ciência que estuda as aves é a ornitologia (gr. ornis = ave). As aves parecem ter evoluído de répteis do tipo dinossáurio arborícola, que se alimentava de insectos. Pensa-se que deverá ter sido esta a causa para o surgimento de muitas das características consideradas típicas das aves, nomeadamente os olhos grandes, patas com boa aderência e longo focinho (mais tarde modificado para bico). Talvez tenha mesmo sido essa a origem da endotermia, pois permitia tirar partido de zonas frias em que os insectos (seu principal alimento) se tornavam lentos e inactivos.

O fóssil de ave mais antigo data de há cerca de 150 M.a. durante o período Jurássico. Este animal do tamanho de um corvo ficou conhecido por Archeopteryx lithographica e apresentava características combinadas de réptil e de ave (asas, penas, focinho com maxilares com dentes, etc.). Não é claro se voava ou planava pois não possuía o esterno em forma de quilha, necessário à inserção dos músculos das asas.

Durante o Cretácico as aves diversificaram-se e evoluíram, tornando o voo mais eficaz. Foi neste período que surgiram os antepassados das aves actuais. Outro mistério da evolução das aves é o motivo porque sobreviveram á grande extinção do final deste período, embora a endotermia talvez possa ser um factor a ter em conta.

Aves
Caracterização

As suas características principais são:
Corpo

Fundamental para uma boa adaptação ao voo, o corpo da ave é, de modo geral, relativamente pequeno, forte e compacto, com músculos poderosos.
Pele

A pele é mole e flexível está frouxamente ligada aos músculos subjacentes e não apresenta glândulas (excepto a glândula uropigial, acima da cauda, que secreta um óleo que impermeabiliza as penas e evita que o bico se torne quebradiço).

As penas formam um revestimento leve e flexível, resistente e com inúmeros espaços aéreos úteis como isolantes. As penas das asas e cauda formam, ainda, importantes superfícies de sustentação da ave no voo. Por esse motivo, devido ao intenso desgaste que sofrem, as aves são muito cuidadosas na sua manutenção.

As penas crescem a partir de folículos, tal como as escamas dos répteis ou os pêlos dos mamíferos, e são exclusivamente epidérmicas. São formadas exclusivamente por queratina. A origem filogenética das penas não é clara, existindo teorias alternativas. Uma delas considera que as penas terão evoluído como revestimento isolante e não relacionadas com o voo.

Com excepção das avestruzes, pinguins e algumas outras aves completamente cobertas de penas, estas só crescem em certas partes do corpo, entre os quais existem espaços vazios. Existem 4 tipos de penas nas aves actuais: rémiges (penas de voo das asas, com contorno assimétrico, mais largas na parte interna, a favor do vento), rectrizes (penas de voo da cauda, simétricas), tetrizes (penas de cobertura, que proporcionam um contorno aerodinâmico) e plumas (penas muito delicadas, que formam a penugem que reveste todo o corpo).

A cor das penas é obtida por duas formas: presença de pigmentos na pena ou por reflexão da luz nas barbas da pena. Os pigmentos são variados, nomeadamente melanina (castanho a preto) e carotenóides (amarelo, laranja e vermelho). A reflexão total da luz produz plumagem branca, enquanto a reflexão parcial origina as brilhantes plumagens azuis e a maioria dos verdes. Se à reflexão se adicionar melanina obtém-se o verde azeitona, se se adicionar carotenóides um verde-alface vivo.

Pena de Ave

As penas sofrem mudas regulares, num processo gradual e ordenado, de modo a que nunca se formam áreas nuas. A mudança de penas nunca se realiza em épocas críticas (de elevado investimento metabólico), como quando se reproduzem, migram ou durante condições adversas (escassez de alimentos ou secas, por exemplo).
Esqueleto

Totalmente ossificado, o esqueleto das aves é simultaneamente delicado e forte, pois muitos ossos estão fundidos (o que diminui a necessidade de grandes músculos e tendões para os unir) e muitos outros são ocos.

O facto de não conterem medula no seu interior torná-los-ia frágeis, pelo que são suportados internamente por uma rede de trabéculas ósseas. Muitos destes ossos ocos contêm sacos aéreos no seu interior, associados ao sistema respiratório.

O esqueleto das aves é modificado de modo a que se adapte ao voo, à locomoção bípede e à postura de grandes ovos de casca dura. O crânio tem um côndilo occipital e o pescoço é tipicamente longo e flexível, permitindo a alimentação e o tratamento das penas.

O esterno é grande e com quilha, onde se apoiam os poderosos músculos das asas, o que impede a sua expansão durante a respiração. A cintura pélvica é largamente aberta ventralmente, permitindo a passagem fácil dos ovos nas fêmeas. As vértebras caudais são pouco numerosas e comprimidas.
Patas

As patas anteriores transformadas em asas para voar, que embora tenham o padrão tetrápode típico, estão bastante modificadas: o número de dedos está reduzido e muitos ossos estão fundidos. Além disso, todas as articulações da asa, com excepção da do "ombro" não são flexíveis no plano vertical. Assim, quando a ave voa as asas formam uma superfície quase plana, com batimentos apenas ao nível da ligação ao corpo, o que poupa energia.

As patas posteriores têm geralmente 4 dedos (3 virados para a frente e um para trás, o sistema ideal para se empoleirar) com garras córneas e revestidas por escamas epidérmicas, adaptadas a andar ou nadar (neste caso com membranas interdigitais). No entanto, existem aves com apenas 2 dedos no total (avestruzes, por exemplo) ou com 2 dedos virados para a frente e dois para trás (pica-paus, por exemplo).

As patas posteriores são muito fortes e resistentes, permitindo ao animal lançar-se para o ar e amortecer a aterragem.
Sistemas viscerais

O sistema nervoso e órgãos dos sentidos são bem desenvolvidos. A visão é um sentido primário nas aves, tendo os olhos grandes uma elevada acuidade visual e uma rápida acomodação. A retina contém maior número de receptores por unidade de área que os restantes vertebrados (em algumas espécies 8 vezes mais). Os olhos estão rodeados por pálpebras e membrana nictitante.

Os ouvidos abrem atrás dos olhos, protegidos por penas especiais, e são igualmente eficientes. As narinas abrem no maxilar superior, mas a quimiorrecepção (olfacto e gustação) é muito pobre, devido ao estilo de vida destes animais.

Sistema digestivo com boca rodeada por um bico pontiagudo, leve e flexível e com revestimento córneo (queratina) que cresce continuamente, para substituir possíveis desgastes. Quando aberto, tanto o maxilar inferior como o superior se deslocam, obtendo-se uma ampla abertura. A forma do bico revela os hábitos alimentares da ave, pois a sua forma está a eles adaptada.

O papo que humedece e armazena os alimentos e a moela musculosa, onde, com a ajuda de pequenas pedras, o alimento é triturado são característicos da aves. O ânus abre na cloaca.

O seu pequeno peso e elevado metabolismo levam a que as aves necessitem permanentemente de grande quantidade de alimentos de alto teor calórico. Os níveis de açúcar no sangue de uma ave são cerca de duas vezes superiores aos de um mamífero.

O sistema respiratório tem pulmões compactos estão presos ás costelas e ligados a sacos aéreos de paredes finas, que se estendem entre os órgãos viscerais. Este facto resulta da fraca possibilidade de expansão da caixa torácica, muito rígida para melhor sustentar os músculos do voo.

Os sacos aéreos ajudam ao processo respiratório e dissipam o calor gerado pelo elevado metabolismo. A caixa vocal, ou siringe, localiza-se na base da traqueia, útil para a comunicação a longas distâncias.

O sistema circulatório apresenta um coração com 4 câmaras, glóbulos vermelhos biconvexos e nucleados.

O sistema excretor é composto por rins metanéfricos, associados a sistema porta-hemal. Não têm bexiga pois não produzem urina aquosa, o que reduz o peso total do animal.

São animais endotérmicos ou homeotérmicos, o que lhes permite permanecer activas durante todo o ano e à noite. O surgimento desta característica nas aves parece ter sido independentemente dos mamíferos, dadas as elevadas necessidades energéticas do voo. A temperatura interna das aves ronda os 40 - 42ºC.
Reprodução

A grande maioria das aves é monogâmica (pelo menos aparentemente), formando casais reprodutores. Os machos defendem um território e realizam complexos rituais de acasalamento, exibindo-se ou cantando para atrair as fêmeas.

Ninho de Ave
As aves, como este ganso do Canadá, fazem ninhos para colocar os seus ovos e para alojar as crias. Os ninhos podem ser no solo ou em árvores, desde os mais simples montes de terra e gravetos a elaboradas construções


As crias de ave, como esta de catatua rosada, nascem de olhos fechados e sem penas mas os cuidados paternais permitem um crescimento rápido

Todas as aves são ovíparas e produzem ovos amnióticos com muito vitelo e casca calcária. Os ovos são sempre depositados externamente (geralmente num ninho) para incubação. O ninho fornece segurança, calor e um local isolado e longe de predadores para cuidar das crias. Os materiais de construção de ninhos dependem da disponibilidade local, podendo ser usados galhos, penas, pêlos, teias de aranha e até pele de réptil ou artefactos humanos.

Nas fêmeas, apenas um dos ovários embrionários se torna funcional no adulto, num esforço para reduzir o peso da ave durante o voo. Um ovário maduro tem o aspecto de um cacho de uvas, podendo conter até 4000 óvulos, que podem potencialmente desenvolver-se em gemas. Cada um está ligado ao ovário através de uma fina membrana - folículo - coberta por uma rede de vasos sanguíneos. A gema é formada por deposição de camadas sucessivas de vitelo, permanecendo o blastodisco à sua superfície.

Após a ovulação, a gema é mantida íntegra pela membrana vitelina e é recolhido da cavidade abdominal pela extremidade em forma de funil do oviducto, designada funículo ou infundíbulo. nesta zona do oviducto ocorre a fecundação, se os espermatozóides a tiverem alcançado.

As restantes zonas do oviducto formam os componentes do ovo: no magnum a clara é acrescentada, estando a forma do ovo definida; no istmo, uma zona mais estreita do canal, formam-se as membranas da casca; no útero ou glândula da casca forma-se a casca, a etapa mais demorada da formação do ovo, e diferencia-se a calaza; na vagina o ovo recebe uma fina película anti-bacteriana e anti-partículas designada cutícula, impedindo-as de penetrar através da casca porosa. Também na vagina o ovo é virado, pois deverá ser posto com a extremidade arredondada primeiro.

Os ovos são geralmente pigmentados, devendo-se a sua cor à mistura em percentagens variáveis de apenas dois tipos de pigmento, um derivado da hemoglobina e outra da bílis. O pigmento é adicionado à casca durante a passagem deste pelo oviducto da fêmea. Os ovos esbranquiçados pertencem geralmente a espécies que os colocam em cavidades, como os pica-paus, permitindo-lhes identificar facilmente o ovo no escuro. Pelo contrário, ovos pigmentados são geralmente colocados em ninhos abertos, permitindo-lhes passar despercebidos aos predadores.

Ao pôr o ovo, a fêmea everte parcialmente a cloaca, como se virasse uma luva ao contrário, impedindo, assim, que o ovo entre em contacto com o ânus e seja contaminado por fezes. Os restantes sistemas são também bloqueados, impedindo descargas acidentais durante o esforço de postura do ovo.

O sistema reprodutor masculino mantêm no adulto os dois testículos embrionários, ligados a um par de epidídimos e canais deferentes, que conduzem à cloaca os espermatozóides e as secreções espermáticas.

A fecundação é sempre interna, com a cópula resultando apenas do encosto das aberturas das cloacas masculina e feminina - "beijo" cloacal. No entanto, existem aves (algumas espécies de patos e gansos, cisnes, avestruzes ou búfagos, por exemplo) que apresentam órgãos fálicos, embora sem vasos sanguíneos no seu interior. É comum que apresentem um sulco espiralado ao longo da sua superfície, por onde o esperma escorre para o interior da cloaca e oviducto da fêmea.

As crias, pouco desenvolvidas ao nascer, são alimentadas e vigiadas pelos pais, após a eclosão. Na maioria das espécies, os pintos nascem cegos, sem penas e sem capacidade reguladora de temperatura corporal. Algumas espécies (principalmente aves aquáticas), no entanto, têm pintos um pouco mais desenvolvidos, com penas e capazes de procurar alimento poucas horas após o nascimento.
Migrações

As aves realizam frequentemente migrações sazonais. A maioria das aves migradoras reproduz-se na Primavera e Verão em latitudes elevadas, aproveitando os dias longos e soalheiros, mas parte para latitudes mais baixas com a aproximação do Inverno.

Nem todas as aves migram pois este é um processo muito caro do ponto de vista metabólico, mas tal depende das condições ambientais permitirem ou não a permanência no local de reprodução. As aves tropicais são as mais frequentemente sedentárias.

A necessidade de migrar depende de uma série de factores, entre os quais os níveis hormonais da ave e alterações da duração do fotoperíodo. Quando a época da migração se aproxima as aves tornam-se inquietas e armazenam grandes quantidades de gordura, necessária para a longa viagem.

Algumas migrações são particularmente impressionantes, percorrendo milhares de quilómetros e atingindo locais muito específicos, como o caso da migração das andorinhas (da Europa ocidental à África do Sul).

Aves

14 de mai. de 2010

Crustáceos





Os crustáceos incluem as cracas, lagostins, camarões, caranguejos e seus afins. A maioria é marinha, mas muitos vivem em água doce ou salobra e poucos, como o tatuzinho-de-quintal, encontram-se em lugares úmidos na terra. Espécies aquáticas habitam diversamente a praia, rochas, plantas submersas ou mares abertos; muitas larvas e alguns adultos cavam, outros são pelágicos e poucos vivem em mar profundo. A grande maioria é de vida livre e algumas espécies gregárias ocorrem em grandes grupos. Os cirripédios são sésseis ou parasitas e certos outros crustáceos são comensais ou parasitas de vários animais aquáticos, de hidróides até baleias. Algumas espécies parasitas são de tal forma modificadas que sua posição de crustáceo é mostrada somente em seus estágios larvais.

Relações com o homem
A carne de certos crustáceos é muito apreciada como alimento humano. Camarões são capturados com arrastões, mas caranguejos, lagostas e lagostins são presos em armadilhas de arame, madeira ou rede, com iscas. O siri da costa atlântica é capturado e mantido em cativeiro até que mude e então é vendido na condição de casca mole.

Os pequenos crustáceos que abundam na água salgada e doce são importantes elos no ciclo alimentar de muitos peixes e outros animais aquáticos úteis. Alguns copépodos são hospedeiros intermediários de vermes parasitas do homem e de vários vertebrados.

CRUSTÁCEOS
Crustáceos são os artrópodes que possuem uma crosta protegendo o corpo. Os principais representantes dessa classe são os camarões, as lagostas, os caranguejos e os siris, todos com 5 pares de patas. São decápodes ( deca= dez; podes= patas, pés).

Na maioria dos decápodes, as 2 patas dianteiras são modificadas e bem desenvolvidas como adaptação à preensão de alimentos. Inclui animais tipicamente aquáticos, sendo a maioria marinhos, outros vivem em água doce e poucos, como os tatuzinhos de quintal (jardim) são encontrados em lugares úmidos porem em terra.

A importância da maioria das espécies está no fato de servirem como alimentos para animais maiores, sendo assim um importante elo nas cadeias alimentares que conduzem à peixes e outros animais aquáticos maiores.

MORFOLOGIA EXTERNA DOS CRUSTÁCEOS

Se usarmos o camarão ou a lagosta como exemplo, notaremos que seu corpo se divide em duas regiões:

Cefalotórax: apresenta-se como uma rígida estrutura, não articulada, resultante da fusão da cabeça e tórax, sendo que a região cefálica é constituída de 5 ou 6 segmentos e a região torácica de 8.

Na região da cabeça um par de olhos penduculados e móveis, dois pares de antenas, o par mais curto é chamado de antênulas birremes e o longo de antenas; ambos são receptores de estímulos do meio ambiente. Ocorre também um par de mandíbulas para mastigação e dois pares de maxilas.


Na região torácica encontramos cinco pares de apêndices (pernas torácicas), denominados PERIÓPODOS, são usados para andar sobre o fundo.

ABDOME
É formado por diversos segmentos distintos e articulados. Seus apêndices (pernas abdominais) são denominado PLEÓPODOS, ajudam na respiração e carregam os ovos das fêmeas. Os últimos segmentos são estruturas achatadas; os dois laterais são denominados urópodos e o central, telso. Em conjunto eles formam um remo para natação.

Obs - cada segmento do corpo é formado como nos insetos por 4 peças:

Um tergo
Um esterno
Duas pleuras
MORFOLOGIA INTERNA DOS CRUSTÁCEOS
Aparelho digestivo
É formado pela boca, esôfago, estômago dividido em duas partes: 1º- anterior, denominada câmara cardíaca e a 2º- posterior chamada de câmara pilórica; Intestino médio, intestino tubular e ânus. Na câmara cardíaca existem dentes calcificados formando um moinho gástrico que ajuda na trituração dos alimentos.

Aparelho circulatório
Formado por um coração dorsal curto e irregular de onde saem seis artérias que se distribuem por todo o corpo. O sangue (hemolinfa) possui coloração azulada devido ao pigmento hemocianina, e volta ao coração pelos ostíolos. Este sistema circulatório é denominado aberto ou lacunar, porque o sangue não está sempre no interior dos vasos.

Aparelho excretor
Formado por um par de glândulas verdes, situadas na face ventral da cabeça, que se abre no meio exterior de um orifício próximo a base das antenas. As glândulas retiram restos orgânicos e sais da hemolinfa. São os únicos órgãos excretores dos crustáceos. Invertebrados aquáticos eliminam o nitrogênio como amônia, composto este altamente tóxico, porém rapidamente eliminado porque há sempre excesso de água.

Aparelho respiratório
Formado por vários pares de brânquias situadas nos dois lados de todos os segmentos torácicos.

Sistema nervoso
Consta de gânglios supraesofágico (cérebro, gânglio subesofágico e cordão nervoso ventral duplo. O gânglio subesofágico é resultante de fusão de 5 ou 6 pares de gânglios.

Órgãos sensitivos
São estruturas que colocam o animal em contacto com o meio ambiente, são sensíveis ao tato, gosto, olfato e visão.

A visão e dada pelos olhos compostos que são pedunculados e móveis. O tato é percebido pelos pêlos tácteis que se distribuem pelo corpo. O sentido químico, gosto mais olfato, reside em pêlos localizados nas extremidade das antenas, peças bucais e extremidade daquelas.

Equilíbrio e orientação à gravidade é dado pelo estatocisto que é uma estrutura em forma de saco que se abre dorsalmente sob pêlos finos, no artículo basal de cada antênula.

Muda
Como o esqueleto é rígido, deve ser mudado periodicamente para permitir o crescimento do tamanho do corpo.

Órgão X, uma pequena glândula, produz hormônios que inibe a muda, enquanto que os hormônios do órgão Y induz a muda.

Antes da muda um novo esqueleto mole cresce embaixo e separe-se do mais velho, músculo e outras estruturas dentro das extremidades amolecem e diminuem de volume. A velha cutícula então abre-se dorsalmente, e o animal lentamente se retira deixando o revestimento aumentando o volume do corpo e distendendo a nova cutícula.

Em camarão por exemplo, ocorre várias mudas que determina estágios larvais, onde os jovens são muito diferente dos animais adultos. Estágios larvais do camarão : Nauplius, Protozoea, Zoea, Mysis e Adulto.

Regeneração
Os crustáceos como os artrópodes em geral tem boa capacidade de regenerar partes perdidas. Quando perde-se uma parte ela começa a ser regenerada na muda seguinte e cresce a cada muda, até ficar completa.

Se arrancarmos o pedúnculo todo do olho, a regeneração pode ser defeituosa e não originar um novo olho, e sim um apêndice em forma de antena. Regeneração de uma parte diferente daquela que foi removida é chamada heteromorfose. A regeneração é tanto maior quanto mais jovem for o animal.

CLASSIFICAÇÃO DOS CRUSTÁCEOS
O número de patas é um bom critério, que permite dividir a classe dos crustáceos em duas ordens:

Decápodes
Isópodes
Os decápodes são crustáceos de dez patas.
Os isópodes são crustáceos que possuem numerosas patas, todas semelhantes. O exemplo mais conhecido é um isópodes encontrado em toda a costa litorânea do Brasil, conhecido por Tatuí, tatuíra ou tatuzinho de de praia.

Revestimento do corpo dos crustáceos
O esqueleto é um sistema encarregado da sustentação do corpo, tanto em vertebrados como em invertebrados; nos vertebrados, o esqueleto fica dentro do corpo, e nos invertebrados fica fora, revestindo o corpo. Dizemos, então, que os vertebrados tem endoesqueleto (esqueleto interno) e que os invertebrados tem exoesqueleto (esqueleto externo).

Dentre os artrópodes, os crustáceos são os que possuem exoesqueleto mais volumoso e mais desenvolvido; Ele forma a crosta, que deu nome aos crustáceos, e que reveste e protege o corpo desses animais. Essa crosta é constituída por quitina e carbonato de cálcio.

Externamente, podemos reconhecer duas partes no corpo dos crustáceos: o cefalotórax e abdômen (comentário acima).

Subclasse Branchiopoda
Ordem Cladocera
São conhecidos como pulgas d"água, devido a semelhança com aqueles insetos. Locomovem-se através das antenas transformadas em vigorosos órgãos de propulsão.

Podemos encontra-las em concentrações que variam de 100 a 100.000 por metros cúbicos de água. São de suma importância sob o aspecto ecológico, uma vez que representam a dieta principal dos peixes de água doce.

Ex. Daphnia pulex.

Subclasse Cirripédia
Ordem Thoracica
São animais sésseis que se apresentam bem diferentes de outros crustáceos, sendo dificilmente reconhecidos como tais. Eles fixam-se pela região pré-oral, e tem seu corpo protegido por uma carapaça constituída por várias placas às vezes fundidas umas às outras. Dois tipos são encontrados nas águas litorâneas: as que possuem pedúnculo, conhecidas como Lepas, e as que não possuem conhecidas como Balanus (cracas).são vivíparas.

Subclasse Malacóstraca
Ordem Isopoda
São representados pelos tatuzinhos de jardim (Porcellio e Armadillidium) e as baratinhas da praia (Ligia exotica).São crustáceos terrestres que apresentam sete segmentos torácicos distintos, cada um com um par de pernas.A respiração nos isópodos é feita através de apêndices abdominais modificados para esse fim.

Ordem Decapoda
Caracterizam-se por apresentarem 5 pares de extremidades locomotoras. Nesta ordem estão os principais crustáceos, os mais evoluídos que entram na alimentação humana.

Basicamente podemos diferenciar nos adultos o desenvolvimento do apêndice abdominal, nas fêmeas é bem mais largo com relação ao dos machos.

Esse desenvolvimento é justificado com a função de proteção aos ovos que darão origem aos descendentes.

Fonte: www.biomania.com.br

Anfíbios

Classe Amphibia inclui as cecílias (Ordem Gymnophiona), as salamandras (Ordem Caudata) e os sapos, rãs e pererecas (Ordem Anura). Embora existam variações na forma do corpo e nos órgãos de locomoção, pode-se dizer que a maioria dos anfíbios atuais tem uma pequena variabilidade no padrão geral de organização do corpo. O nome anfíbio indica apropriadamente que a maioria das espécies vive parcialmente na água, parcialmente na terra, constituindo-se no primeiro grupo de cordados a viver fora da água. Entre as adaptações que permitiram a vida terrestre incluem pulmões, pernas e órgãos dos sentidos que podem funcionar tanto na água como no ar. Dos animais adaptados ao meio terrestre, os anfíbios são os mais dependentes da água. Foram os primeiros a apresentar esqueleto forte e musculatura capaz de sustentá-los fora d'água.

Sua pele é bastante fina e para evitar o ressecamento provocado pela exposição ao sol, possui muitas glândulas mucosas. Estas liberam um muco que mantém a superfície do corpo úmida e lisa, diminuindo o atrito entre a água e o corpo durante o mergulho.

A epiderme também possui pouca quantidade de queratina, uma proteína básica para a formação de escamas, placas córneas, unhas e garras. A ausência destas estruturas os torna frágeis em relação à perda de água e também quanto à sua defesa de predadores. Por isso, alguns anfíbios desenvolveram glândulas que expelem veneno quando comprimidas.

A respiração dos anfíbios pode ocorrer através de brânquias e da pele (na fase larval e aquática) e da pele e de pulmões quando adultos e terrestres.

São ectotérmicos, ou seja, a temperatura do corpo varia de acordo com a temperatura do ambiente. Por isso, em épocas frias ou muito secas, muitas espécies enterram-se sob o solo aí permanecendo até a época mais quente e chuvosa. Este comportamento, em muitos locais do Brasil, deu origem à lenda de que os sapos caem do céu, pois, com a umidade provocada pelas chuvas, os anfíbios saltam das covas onde estavam em estado de dormência, para a atividade.

Também dependem da água para se reproduzirem: a fecundação ocorre fora do corpo da fêmea e o gameta masculino necessita do meio aquoso para se locomover até o óvulo da fêmea. Esta dependência ocorre também porque os ovos não possuem proteção contra a radiação solar e choques mecânicos. O desenvolvimento da larva é indireto, ou seja, a larva após a eclosão do ovo, passa por várias transformações até atingir a forma adulta, como acontece com o girino.

A maioria das espécies de anfíbios apresenta hábitos alimentares insetívoros, sendo, portanto, vertebrados controladores de pragas. Muitas espécies, sensíveis a alterações ambientais (desmatamento, aumento de temperatura ou poluição) são consideradas excelentes bioindicadores. A diminuição de certas populações tem sido atribuída a alterações globais de clima e para certos biomas do Brasil, como a Mata Atlântica, os declínios populacionais ou mesmo extinção de anfíbios têm sido atribuídos ao desmatamento.

Algumas espécies, como a perereca-da-folhagem (Phyllomedusa bicolor) e o sapinho pingo-de-ouro (Brachycephalus ephipium) têm sido alvo de estudos bioquímicos e farmacológicos, para isolamento de substâncias com possíveis usos medicinais. Estes são apenas dois exemplos de uso potencial de anfíbios, que têm despertado interesse científico e comercial internacional e gerado problemas de "pirataria biológica" devido a falta de uma política clara sobre o uso da biodiversidade do Brasil.

Fonte: www.vivaterra.org.br

10 de mar. de 2010

Bactérias

Cocos (Staphylococcus)
Cocos (Staphylococcus)

Bastonetes (E. coli)
Bastonetes (E. coli)

Espiral (Treponema pallidium)

As bactérias são microrganismos procarióticos, unicelulares, com tamanhos e formas variadas dependendo da espécie. A maioria varia de 0,2 a 2,0 mm de diâmetro e de 2 a 8 mm de comprimento. As formas encontradas são esféricas (cocos - Fig 1), bastão (bastonetes - Fig 2), e com curvaturas (espirais - Fig 3). Possui estruturas encontradas externamente a parede celular, como o flagelo e os cílios, que são usados para locomoção ou para mover substâncias. Algumas células bacterianas são circundadas por uma cápsula chamada glicocálice, que é composta de polissacarídeos e protege da fagocitose, permitem a adesão em superfícies, impedem o ressecamento e podem fornecer nutrientes.



A parede celular é a estrutura mais importante das bactérias, pois além de circundar a membrana plasmática, ela protege a célula contra pressão osmótica. Ela é composta por peptidioglicanas, um polímero composto de N-acetilglicosamina (NAG) e ácido N-acetilmurâmico (NAM) e cadeias curtas de aminoácidos. A composição da parede (Fig 4) é importante para definir se as bactérias são gram-negativas (uma camada interna de peptidilglicanas e uma membrana externa de lipopolissacarídios e proteínas) e gram-positivas (várias camadas de peptidilglicanas). A membrana plasmática não possui colesterol e nem outros esteróis e possui um sítio de ligação para a molécula de DNA. O DNA é uma fita única, circular ou contínua, associada a proteínas não-histônicas, localizada na região da célula chamada nucleóide. O citoplasma não possui citoesqueleto.

Parede celular de uma bactéria

ompreendem os seres do Reino Monera (unicelulares procariontes) que não possuem clorofilas vegetal (caso das cianofíceas).

Podem ser:

Heterótrofos
Autótrofos
Aeróbios Fotossintetizantes
Anaeróbios (fermentantes) Quimiossintetizantes
Saprófitos (decompositores)

ESTRUTURAS

Parede celular

Envoltório extracelular rígido responsável pela forma da bactéria constituída por um complexo protéico - glicídico (proteína + carboidrato) com a função de proteger a célula contra agressões físicas do ambiente.

Obs.: Não possui celulose como as das células vegetais.

Cápsula

Camada de consistência mucosa ou viscosa formada por polissacarídeos que reveste a parede celular em algumas bactérias. É encontrada principalmente nas bactérias patogênicas, protegendo-as contra a fagocitose.

Membrana Plasmática

Mesma estrutura e função das células eucariontes.

Obs.: Nas bactérias ocorrem invaginações na membrana plasmática que concentram as enzimas respiratórias: os mesossomos.

Citoplasma

Formado pelo Hialoplasma e pelos Ribossomos. Ausência de organelas membranosas.

Nucleóide

É a região onde se concentra o cromossomo bacteriano, constituído por uma molécula circular de DNA. É o equivalente bacteriano dos núcleos de células eucariontes. Não possui carioteca ou envoltório nuclear. Além do DNA presente no nucleóide, a célula bacteriana pode ainda conter moléculas adicionais de DNA, chamadas Plasmídios ou Epissomas.

Flagelos

Apêndices filiformes usados na locomoção.

Fímbrias

Apêndices filamentares, de natureza proteica, mais finos e curtos que os flagelos. Nas bactérias que sofrem conjugação, as fímbrias funcionam como pontes citoplasmáticas permitindo a passagem do material genético.

SUA IMPORTÂNCIA

Bactérias saprófitas, funtamente com os fungos, são os responsáveis pela reciclagem de matéria orgânica nos ecossistemas.

No ciclo do nitrogênio com a fixação do mesmo ao solo, indispensáveis à vida vegetal. As bactérias do gênero Rhizóbium avivem em simbiose em nódulos das raízes de leguminosas como o feijão e a soja promovendo a fixação do nitrogênio.

Industrial na produção do vinagre, coalhada, queijo e iogurtes. Produção de Antibióticos como a Tirotricina, Bacitracina e Rifamicina.

REPRODUÇÃO Assexuada

Bipartição ou Cissiparidade

Nesse processo a célula bacteriana duplica seu cromossomo e se divide ao meio, apoiado no mesossomo, originando duas novas bactérias idênticas à original.

Sexuada ou Transmissão Genética

Conjugação

Consiste na passagem (ou troca) de material genético entre duas bactérias através de uma ponte citoplasmática formada pelas fímbrias.

Transformação

A bactéria absorve moléculas de DNA disperso no meio. Esse DNA pode ser proveniente, por exemplo, de bactérias mortas.

Transdução

As moléculas de DNA são transferidas de uma bactéria a outra usando vírus como vetores.

PRINCIPAIS DOENÇAS
Cancro Botulismo
Lepra (Hanseníase) Cólera
Tuberculose Peste Bubônica
Pneumonia Peste Pneumônica
Blenorragia ou Gonorréia Sífilis ou lues
Febre Tifóide Desenterias
Tifo Coqueluche
Difteria ou Crupe

Tétano

Leptospirose Meningite

COMBATE

Vacinação (preventiva)

Antibióticos (exclusivo)

Obs.1: 0 primeiro antibiótico descoberto foi a penicilina; extraída de fungos do gênero Penicillium. A penicilina impede a formação da Parede Celular bacteriana.

Obs. 2: Os micoplasmas (PPLo) e as Rickétsias são os menores seres vivos do planeta conhecidos. São e bactérias muito simples, heterótrofas e parasitas.

Obs. 3: Resistência ao Antibiótico

O sucesso dos antibióticos só não foi completo porque logo surgiram linhagem de bactérias resistentes. Isso pode ocorrer:

Por mutação: alteração genética que torna a bactéria capaz de resistir a um determinado antibiótico.

Adquirir de uma outra bactéria em Plasmídio, com genes para resistência.

Fonte: www.universitario.com.br

4 de mar. de 2010

FUNGOS






Os fungos, também conhecidos como cogumelos, são organismos uni ou pluricelulares, destituídos de pigmentos fotossintetizantes.
Dotados de parede celular, sua reprodução normalmente envolve a participação de esporos, como ocorre entre as plantas।


E, enquanto os animais são heterótrofos por ingestão, os fungos são heterótrofos por absorção.
Pelas, diferenças que apresentam tanto em relação aos vegetais como aos animais, modernamente os fungos são enquadrados num reino “somente deles": o reino Fungi
O ramo da Biologia que se encarrega do estudo das aproximadamente 10 000 espécies de fungos conhecidas chama-se Micologia.
Na espécie humana são conhecidas diversas micoses, doenças causadas por fungos.
Entre elas podemos considerar: o sapinho ou a candidíase, causada pelo fungo Candida albicans; a frieira ou pé-de atleta, provocada pelo fungo Tinea pedis; a blastomicose sul-americana, micose grave que pode ocasionar a morte por lesões na pele e em órgãos internos, como os pulmões; a dermatose pitiríase (do grego pityron = farelo), caracterizada pela produção de escamas epiteliais que se esfarelam.
Os fermentativos: álcool, bebidas, pães, bolos
Na fabricação do álcool e de bebidas alcoólicas, como o vinho e a cerveja, é fundamental a participação dos fungos do gênero Saccharomyces, que realizam fermentação alcoólica, convertendo açúcar em álcool etílico.





Esses fungos, conhecidos também como leveduras, são anaeróbicos facultativos, já que realizam respiração aeróbica em presença de gás oxigênio e fermentação na ausência desse gás. Por isso, na fabricação do vinho, por exemplo, evita-se o contato do suco de uva com o ar; assim, em vez de realizar a respiração aeróbica, o fungo processa a fermentação alcoólica, liberando álcool etílico e permitindo a obtenção do vinho.
Antibióticos e queijos
Na indústria de antibióticos, os fungos também têm papel de destaque. Afinal, foi do Penicillium notatum que Alexander Fleming, em 1929, extraiu a penicilina, antibiótico responsável pela salvação de milhares de vidas durante a Segunda Guerra Mundial.
Hoje, muitos outros antibióiicos largamente aplicados são conseguidos a partir de culturas de fungos.
O gênero Penicillium, além de abranger espécies fornecedoras de penicilina, compreende outras que são indispensáveis na manufatura de queijos como o roquefort e o camembert
Os liquens resultam da associação entre algas unicelulares (azuis ou verdes) e fungos (principalmente ascomicetos).
Nessa interação, as algas constituem os elementos produtores, isto é, sintetizam matéria orgânica e fornecem para os fungos parte do alimento produzido; estes, com suas hifas, envolvem e protegem as algas contra a desidratação, além de lhes fornecer água e sais minerais que retiram do substrato.
Denomina-se mutualismo à interação biológica onde as duas espécies são beneficiadas, como as algas e os fungos que constituem o líquen.
Fonte: http://www.fag.edu.br/




Durante muito tempo os fungos foram considerados plantas, mas atualmente sabe-se que eles são tão diferentes das plantas como dos animais, merecendo, por isso, o seu próprio reino – Reino Fungi.
Os fungos são um importante grupo de organismos, conhecendo-se mais de 77000 espécies, a maioria das quais terrestres. Pensa-se que deverão existir tantas espécies de fungos como de plantas, mas a maioria não terá sido ainda descrita. A origem destes organismos não é bem conhecida, assumindo-se que existem ancestrais do tipo protista, embora atualmente estes não sejam reconhecíveis.
Os primeiros fungos devem ter sido eucariontes unicelulares, que terão originado organismos cenocíticos (com numerosos núcleos).O fóssil mais antigo de um organismo semelhante a um fungo data de 900 M.A. mas apenas há 500 M.A. se pôde identificar com toda a certeza um fungo no registro fóssil. Os fungos, tal como as bactérias, são os decompositores da biosfera, sendo a sua função tão primordial como a dos produtores. A decomposição liberta dióxido de carbono para a atmosfera, bem compostos azotados ao solo, onde podem ser novamente utilizados pelas plantas e, eventualmente, pelos animais.Estima-se que os 20 cm superiores do solo fértil contêm mais de 5 toneladas de fungos e bactérias, por hectare. Existem cerca de 500 espécies de fungos marinhos, onde realizam a mesma função que os seus congêneres terrestres. Tal como para os reinos anteriormente estudados, a caracterização dos organismos pertencentes ao reino Fungi será feita com base na sua estrutura corporal, nutrição, reprodução eimportância ecológica.
Características Gerais
Unicelular ou Pluricelular
Eucariontes
Habitat
Lugares úmidos e ricos em matéria orgânica; ambiente aquático
Parede celular
Quitinosa
Raramente celulósica
Substância de reserva
Glicogênio
Todos são heterótrofos
Reprodução por esporos
Assexuados e não meióticos: Zoósporos (aquático), Aplanósporos (terrestre) e Conidiósporos (forma conídica)
Sexuados e surgem de uma meiose: Ascósporos e Basidiósporos
Nos pluricelulares surgem Hifas e Micélio
Não possuem tecidos
Nutrição por absorção
Digestão extra corpórea e extra celular
Tipos de Hifas: As hifas septadas têm paredes – septos – a separar os compartimentos celulares entre si. Os septos não são, no entanto, completos, existem porosque permitem a comunicação, e mesmo o movimento de organitos, entre os citoplasmas adjacentes. Este tipo de hifa pode apresentar um único núcleo por compartimento – monocariótica – ou dois núcleos por compartimento –dicariótica.
As hifas asseptadas são sempre multinucleadas, encontrando-se osnúcleos, centenas ou mesmo milhares, dispersos numa estrutura cenocítica ou sincicial. Esta estrutura resulta da divisão contínua do núcleo, sem citocinese. Todos os fungos apresentam parede celular no seu ciclo de vida. Esta parede, outro argumento a favor da sua anterior inclusão no reino das plantas, tem, geralmente, características bem diferentes das vegetais, poisapresenta quitina, polissacarídeo presente na carapaça de muitosanimais(artrópodes), o que lhe confere elevada rigidez e maior resistência à degradação microbiana
A presença da parede impede-os de realizar fagocitose, logo alimentam-se porabsorção, libertando enzimas hidrolíticas para o exterior do corpo e absorvendo os nutrientes sob a forma já digerida.Esta situação permite entender melhor porque motivo os fungosapresentam corpo sob a forma de micélio, pois sem esta estrutura nãoteriam uma relação área/volume suficientemente elevada para se alimentar eficazmente. Os fungos são altamente tolerantes a ambientes hostis, sendo alguns mais resistentes a ambiente hipertônicos que as bactérias (fungos são capazes de crescer num frasco de doce no frigorífico, onde não cresceriam bactérias). Resistem igualmente a grandes amplitudes térmicas, tolerando temperaturas de –6ºC a 50ºC ou mais, dependendo da espécie.
Micélio Reprodutor
Reprodução
Micélio Vegetativo
Nutrição e fixação
A estrutura em micélio confere aos fungos uma elevada relação área/volume, facilitando a aquisição de alimento, pois esta estrutura rapidamente se estende em todas as direções sobre o alimento, podendo crescer mais de um quilometro por dia, no total, e afastar-se mais de 30 metros do local de inicio do crescimento. Por este motivo, um fungo tem um importante efeito no meio, nomeadamente na degradação de substrato e na acumulação de partículas. O crescimento das hifas ocorre apenas nas extremidades, podendo as zonas mais antigas estar livres de conteúdo citoplasmático.
Importância dos Fungos
Ecológica
Decomposição da matéria orgânica
Associações ecológicas
Simbiose: Mutualistica (Líquens{algas} e micorrizas {raízes}) e Parasitismo (micoses);
Na Alimentação
Engenharia genética
Neurospora crassa
O modo de alimentação dos fungos permite separá-los em quatro grupos principais: Fungos saprófitos – fungos que vivem sobre matéria orgânica morta, criando estruturas reprodutoras a partir do micélio.
São de grande importância nos ecossistemas pois são decompositores, reciclando os elementos químicos vitais, como por exemplo carbono, azoto, fósforo, entre outros. No entanto, esta capacidade de decomposição dos fungos pode ser um problema para o Homem, pois existem fungos capazes de destruir as culturas, os alimentos, roupas, navios e mesmo certos tipos de plástico. A melhor maneira de proteger de fungos qualquer material é mantê-lo num meio o mais seco possível;
NUTRIÇÃO DOS FUNGOS
Fungos mutualísticos
Fungos que estabelecem relações mutualísticas com seres autotróficos, tornando-os mais eficientes na colonização de habitats pouco hospitaleiros. São disso exemplo os líquens. Neste caso, as células autotróficas (de clorófitas ou de cianobactérias) ficam protegidas por uma camada de hifas, que forma quase uma epiderme. Dado que a alga não se pode deslocar, o fungo fornece-lhe os nutrientes minerais de que necessita para a fotossíntese e protege-a das alterações ambientais, recebendo em troca compostos orgânicos.
Esta parceria invulgar permite aos líquenes sobreviver em locais inóspitos, constituindo a primeira comunidade a aí se fixar, abrindo caminho para seres mais exigentes. Líquens com cianobactérias teriam sido os primeiros organismos multicelulares a colonizar o meio terrestre, incluindo no solo compostos azotados.
Outra importante associação simbiótica (protocooperação ou mutualismo) dos fungos são as micorrizas, associações entre as hifas e as raízes de árvores. Calcula-se que cerca de 90% das árvores de grande porte tenham micorrizas, sendo inclusive encontradas no registro fóssil. Este fato leva os cientistas a concluírem que as micorrizas podem ter tido um importante papel na colonização do meio terrestre pelas plantas. O fungo recebe da planta nutrientes orgânicos e fornece nutrientes minerais como o fósforo, cobre, zinco, água, etc. As micorrizastambém ajudam na proteção das raízes contra infecções por parte de outros microrganismos do solo.As micorrizas podem ser de dois tipos principais:
Endomicorrizas
De longe as mais comuns, ocorrem em cerca de 80% das plantas vasculares, principalmente nos trópicos, onde os solos pobres e carregados positivamente impedem uma fácil absorção de fosfatos pelas raízes das plantas. As hifas penetram na raiz e mesmo nas células vegetais, facilitando a absorção de nutrientes minerais. Estas associações não são específicas, existindo mais de 200 espécies de fungos em todo o mundo que formam endomicorrizas com os mais variados organismos vegetais;
Ectomicorrizas
Características de certos grupos específicos de árvores ou arbustos de zonas temperadas, como as faias, carvalhos, eucaliptos epinheiros. As hifas formam um invólucro em torno das células das raízes, nunca as penetrando, mas aumentando enormemente a área de absorção, o que, aparentemente, as torna mais resistentes ás rigorosas condições de seca e baixas temperaturas e prolonga a vida das raízes. As ectomicorrizasdesempenham o papel dos pelos radiculares, ausentes nestas circunstâncias. Neste caso, parece existir um elevado grau de especificidade nestasrelações protocooperativistas, estando mais de 5000 espécies de fungos, principalmente cogumelos, envolvidas na formação de ectomicorrizas
Fungos parasitas
Fungos que retiram o alimento do corpo dos hospedeiros, prejudicando-os e causando-lhes doenças. Alguns são parasitas de protozoários, plantas e animais. Os fungos parasitas geralmente não matam o hospedeiro mas limitam grandemente o seu crescimento. No caso de fungos parasitas de plantas, o esporo desenvolve-se á superfície da folha, penetrando pelo estômato e formando expansões designadas haustórios, através dos quais retira o alimento de que necessita dos citoplasmas vegetais;
Fungos predadores
Estes estranhos fungos capturam e alimentam-se de pequenos animais vivos (nemátodos) que vivem no solo. As hifas destes fungos segregam substâncias anestésicas que imobilizam estes animais, após o que envolvem o seu corpo com o micélio e o digerem. Outras espécies de fungos predadores capturam os nemátodos com o auxílio de verdadeiras armadilhas formadas por argolas de hifas, que, quando estimuladas pela passagem do animal, aumentam de tamanho em cerca de 0,1 segundos, aprisionando-o, sendo de seguida digerido.
Reprodução em fungos
Os processos nucleares, mitose e meiose, que estão por trás dos dois tipos de reprodução apresentam importantes diferenças nos fungos: membrana nuclear permanece durante todo o processo de divisão nuclear, sofrendo uma constrição mediana na separação dos núcleos-filhos;fuso acromático forma-se no interior da membrana nuclear; centríolos não estão presentes, embora existam organizadores de fibrilas, sem no entanto, a estrutura (9x2)+2 típica dos eucariontes. Todos estes mecanismos nucleares estranhos confirmam o fato que os fungos não têm relação direta com nenhum outro tipo de eucarionte atual, merecendo o seu próprio reino.
A grande maioria dos fungos apresenta dois tipos de reprodução: Reprodução assexuada – este tipo de reprodução ocorre através de fenômenos mitóticos de fragmentação do micélio, gemiparidade em fungos unicelulares, como as leveduras, ou esporulação, o método mais usual em fungos multicelulares. A esporulação implica a existência deestruturas especializadas na produção de esporos, formadas por hifas verticais, mais ou menos compactadas e separadas por septos do restante micélio – esporângióforos ou conidióforos. Os esporos imóveis, células de parede espessa especializadas na dispersão, são produzidos aos milhões e transportados pelo vento, até atingirem um substrato favorável, onde se desenvolvem num novo micélio. Estes esporos são geralmente libertados “explosivamente” e podem permanecer viáveis durante longos períodos de tempo. Existem, igualmente, esporos mucilaginosos, de parede fina e envoltos por umasubstância pegajosa que lhes permite aderir ao corpo de outros organismos, que os espalham meio;
Reprodução sexuada
Tal como sempre acontece, este tipo de reprodução, devido ao elevado investimento que exige dos organismos, ocorre em condições desfavoráveis, apenas quando se pretende aumentar a variabilidade através da meiose.Nos fungos predomina a haplofase, apenas existindo núcleos diplóides em etapas da reprodução sexuada. A reprodução sexuada designa-se conjugação, e ocorre entre dois micélios diferentes, estirpe + e estirpe -. Duas hifas crescem em direção uma á outra, transportando um núcleo na sua extremidade. Quando estas se tocam, as paredes são dissolvidas por enzimas e formam-se septos, que isolam os núcleos nas extremidades, originando gametângios. A fusão dos núcleos – gâmetas – origina uma célula diplóide – zigoto -, que irá desenvolver uma espessa parede de proteção –zigósporo. Em condições favoráveis, este esporo sexuado sofre meiose e origina um novo micélio haplóide. Deste modo, os fungos apresentam um ciclo de vida haplonte, com meiose pós-zigótica.
Taxonomia do Reino Fungi
A classificação dos fungos é feita principalmente á base das estruturas reprodutoras, que são as mais diferenciadas do seu ciclo de vida, e no tipo de hifas. Deste modo, tem-se os seguintes filos:
Filo Oomycota
Contendo cerca de 580 espécies, inclui os chamados fungos aquáticos, na sua maioria saprófitos. Estes fungos são filamentosos, com hifas multinucleadas. Apresentam celulose na parede celular, não quitina, ao contrário do que seria de esperar. A reprodução destes fungos difere bastante da dos restantes grupos, aproximando-os mais dos restantes eucariontes (principalmente algas), pelo que muitas vezes se tem questionado a sua relação filogenética com os restantes grupos do reino. Segundo esses autores deveriam ser incluídos no Reino Protista. Produzem esporos assexuados biflagelados, que os verdadeiros fungos nunca produzem. A reprodução sexuada inclui a produção de oogónios com oosferas e anterídeos com núcleos masculinos. Da fecundação resulta o oósporo, um esporo de parede resistente, que dá nome ao táxon. Pertencem a este filo os chamados míldios, bem como os fungos que causam doenças em peixes e nos seus ovos;
Filo Zygomycota
Com 765 espécies conhecidas, são fungos terrestres, a maioria saprófita ou parasita. Apresentam parede celular com quitina e hifas cenocíticas. A reprodução sexuada origina zigosporos no interior de um zigosporângio (que dá o nome ao táxon e pode permanecer dormente longos períodos), de estrutura muito semelhante a um esporângioforo. Pertence a este filo o bolor negro do pão ou da fruta, uma séria ameaça a qualquer material armazenado úmido e rico em glicídos. Outros grupos destes fungos de importância ecológica são a ordemEntomophthorales, parasita de insetos e por isso cada vez mais utilizada no combate a pragas da agricultura, e o géneroGlomus, participante na formação de micorrizas;
Filo Ascomycota
Com mais de 30000 espécies, este filo inclui numerosos fungos familiares e com importância econômica, como as trufas, numerosos bolores verdes, amarelos e vermelhos. O gênero Neurosporafoi fundamental no desenvolvimento da genética, como organismo de estudo. Apresentam hifas septadas dicarióticas ou parcialmente septadas. Parede celular com quitina. Produzem assexuadamente conídios ou exósporos em conidióforos. A designação do filo deriva da estrutura produtora dos esporos sexuados, o ascocarpo, em forma de saco. Pertencem a este filo as leveduras, os únicos fungos deste grupo não filamentosos;
Filo Basidiomycota
São incluídos neste filo mais de 16000 espécies, a maioria bem conhecida, como todos os cogumelos, as ferrugens e os carvões, importantes fitoparasitas. Muito importantes na decomposição de substratos vegetais, atingem 2/3 da biomassa não animal dos solos. São fungos filamentosos, com hifas septadasperfuradas e dicarióticas e com parede quitinosa. A estrutura produtora de esporos sexuados, o basidiocarpo, é vulgarmente conhecido por cogumelo. Este resulta da fusão de dois micélios diferentes e irá produzir basídios, células em forma de clava e separadas do restante micélio por septos. Deles, formam-se os basidiósporos, grupos de 4 e presos por pequenos pedúnculos;
Filo Deuteromycota
Este filo inclui todos os fungos em que não seja conhecida, ou esta seja ignorada para motivos taxonômicos, a reprodução sexuada, como por exemplo os fungos pertencentes ao géneroPenicillium. Este gênero é um dos casos em que a fase sexuada é conhecida mas não é considerada na sua classificação devido a sua elevada semelhança com outros organismos deste filo. Por este motivo este filo também é designado por Fungi Imperfecti. Inclui mais de 17000 espécies, a maioria das quais parece ser de ascomicetos.
Fonte: www.cei.santacruz.g12.br


Mas armazenam glicogênio e apresentam nutrição heterótrofa, como os animais

Total de visualizações de página

 
Desenvolvido por Othon Fagundes