Tecnologia do Blogger.

16 de fev. de 2010


A obtenção de Energia

Energia é a “Capacidade de realizar trabalho”. Os organismos vivos necessitam dessa energia para desenvolver suas atividades metabólicas mantenedoras da vida. A fonte máxima de energia é o sol, e através da fotossíntese, os vegetais conseguem, na síntese da glicose, obter os nutrientes que necessitam; os animais e os seres humanos os obtêm a partir dos alimentos (vegetais e outros animais) que ingerem e que são processados no trato digestório.

A Digestão e Absorção de Nutrientes

O Sistema digestório é um complexo tubo tortuoso de forma e diâmetro irregulares, com cerca de nove metros de comprimento, iniciando-se na boca e estendendo-se até o ânus. Em suas cavidades, os alimentos ingeridos são impulsionados, esmagados e metabolizados com o auxílio de diversos órgãos que secretam substâncias que de alguma forma participam dos processos de digestão e absorção de nutrientes essenciais à manutenção da vida.

O estudo dos grupos de nutrientes tem contribuído sobremaneira para o entendimento dos processos desenvolvidos no trato digestório.

As vitaminas, objeto deste estudo, são compostos orgânicos imprescindíveis para algumas reações metabólicas específicas, agindo muitas vezes como coenzimas ou como parte de enzimas responsáveis por reações químicas essenciais à saúde humana. São usualmente classificadas em dois grupos, com base na sua solubilidade, estabilidade,ocorrência em alimentos, distribuição nos fluídos corpóreos e sua capacidade de armazenamento nos tecidos.

VITAMINAS HIDROSSOLÚVEIS

A maioria das vitaminas hidrossolúveis são componentes de sistema de enzima essenciais. Várias estão envolvidas em reações de manutenção do metabolismo energético. Estas vitaminas não são normalmente armazenadas no organismo em quantidades apreciáveis e são normalmente excretadas em pequenas quantidades na urina; sendo assim, um suprimento diário é desejável com o intuito de se evitar depleção e interrupção das funções fisiológicas normais.

VITAMINAS LIPOSSOLÚVEIS

Cada uma das vitaminas lipossolúveis, A, D, E e K, tem um papel fisiológico separado e distinto. Na maior parte, são absorvidos com outros lipídios, e uma absorção eficiente requer a presença de bile e suco pancreático. São transportadas para o fígado através da ninfa como uma parte de lipoproteína e são estocadas em vários tecidos corpóreos, embora não todas nos mesmos tecidos, nem na mesma extensão. Normalmente são excretadas na urina.

FONTES NATURAIS DE VITAMINAS

“O Segredo simples da vitalidade”

Nas últimas décadas, pesquisadores têm dedicado seus estudos à busca de uma melhor integração do homem com os alimentos que se consome, procurando equilibrar e aperfeiçoar a máquina biológica complexa do corpo humano. Os caminhos desses estudos apontam para várias direções, mas um aspecto comum interessante é a descoberta do valor terapêutico de plantas, ervas, flores e frutas, confirmando cientificamente o poder da alimentação natural da influência de substitutivos químicos que agridem o organismo, ocasionando males e doenças que eram absolutamente desconhecidos de nossos antepassados.

Entre uma série de alimentos estudados pela engenharia bioorgânica, estão os sucos verdes, que atuam como nutrientes de um organismo, agindo em músculos e nervos e dificultando a aquisição de doenças como até mesmo o câncer.

Em 17 de maio de 1994, numa reunião de médicos em Boston o Doutor George W. Crile, de Cleveland, afirmou que o que comemos é radiação, nosso alimento equivale a determinadas quantias de energia.

Os raios de sol fornecem radiação importantíssima aos alimentos e estes cedem correntes elétricas ao sistema do corpo.

A energia solar está armazenada na planta que comemos ou na carne dos animais que comem plantas. Hoje retiramos do carvão ou do petróleo a energia solar aprisionada na clorofila dos vegetais que viveram há milhões de anos. Vivemos do sol por intermédio da clorofila.
Fitobróquios: As Vitaminas do Futuro

O que é melhor para a saúde: comer frutas, legumes e verduras diariamente ou tomar uma pirula contendo vitaminas e antiosxidantes.

Muitas pessoas marcariam a segunda escolha, estariam equivocadas. As pesquisas mais recentes comprovam que frutas, legumes e verduras contêm, além dos nutrientes indispensáveis a saúde, componentes capazes de bloquear a formação de tumores cancerígenos: os fitobioquímicos tais como: brocolio, couve-flor, cenoura, abobrinha, cebola, repolho, pimentão, tomate e diversos tipos de frutas (laranja, acerola, mamão, manga, banana, figo etc).

HIPOVITAMINOSE

Vitamina A (lipossolúvel)
Cegueira Noturna-Causada por falta de vitamina A, falta de capacidade de perceber detalhes em ambientes pouco iluminados.
Ex: Sai de um quarto iluminado e entra em um escuro.
» Cefaléia;
» Lesões na Pele
» Pele áspera e seca.
» Auxilia no tratamento de sarampo e rubéola em quase todas as doenças infeccionadas. A falta de vitamina A facilita mais a pegar doenças infeccionadas.
» Alterações cutâneas: A pele se torna seca escamosa e áspera conhecida como pele de ganso ou pele de sapo.

Vitamina B (Hidrossolúvel)
» Beriberi = doença por deficiência de tianina. Encontrada na Vitamina B1.
» Pelagra= doença causada por deficiência de niacina encontrada na vitaminaB6cansaço.
» Falta de Apetite
» Causa atraso no crescimento.

Vitamina C (Hidrossolúvel)
» Deficiência causa gripe, resfriado e infecções;
» Aumenta a resistência do organismo;
» Provoca hemorragias nas gengivas e na pele (conhecida como escorbuto).

Vitamina D (Lipossolúvel)
» Provoca Raquitismo;
» Desgaste dos ossos (osteoporose) e dos dentes.

Vitamina E (Lipossolúvel)
» Não causa deficiência;

Vitamina K (Lipossolúvel)
» Com a má absorção de lipídeos pode causar destruição da flora intestinal.
» Não foi registrado caso de deficiências grave.

HIPERVITAMINOSE

Vitamina A (Lipossolúvel)
» Excesso pode causar náuseas:
» Vômitos;
» Fadiga;
» Cefaléia;
» Anorexia;
» Coloração Amarelada da pele.

Vitamina B (Hidrossolúvel)
» Não há nenhum efeito tóxico conhecido pela tianina;
» Niocina (pelegra) = Doses grandes tem sido usado na tentativa de abaixar a concentração de colestrol no sangue.Pode ser tóxica para o fígado.

Vitamina C (Hidrossolúvel)
» Não há efeito tóxico.

Vitamina D (Lipossolúvel)
» Anorexia;
» Vômitos;
» Dor de Cabeça;
» Sonolência e Diarréia.

Vitamina E (Lipossolúvel)
» Não apresenta efeitos tóxicos.

Vitamina K (Lipossolúvel)
» Não apresenta efeitos tóxicos.


MEGAVITAMINAS

Substância orgânica que os alimentos fornecem em muito pequena quantidade (geralmente alguns miligramas diários) para assegurar a saúde normal. (Radical grego colocado antes de uma unidade a multiplica por um milhão).
Definição


Defende o ponto de vista de que podemos ser carentes de certas vitaminas e que a maneira de consertar esta carência e, portanto evitar e curar doenças, e ingerir grandes doses delas.

Antecedentes

O Dr. Linus Pauling, duas vezes vencedor do Prêmio Nobel e campeão da vitamina C, foi uma das primeiras pessoas a se interessar seriamente pelos efeitos da ingestão de altas doses de vitaminas na prevenção e cura de doenças.

Relatam curas em casos de alcoolismos, hiperatividade infantil, dependência de algumas drogas, osteoartrite, “neurite”, esquizofrenia, depressão e outros problemas psiquiátricos.

Os criadores da psiquiatria ortomolecular sugerem que variando-se as concentrações de substâncias normalmente presentes no organismo humano, poderemos ajudar a doença mental. Segundo esses teóricos, as diversas células do cérebro necessitam de nutrientes muito diferentes; as células cerebrais e nervosas, por exemplo, precisam de muito mais vitaminas B e C do que outras partes do organismo.


Para o cérebro funcionar normalmente ele precisa, pelo menos das vitaminas riboflavina, nicotinamida, piridoxina, cianocobalamina, ácido ascórbico, e ácido fólico. Existem outras substâncias químicas essenciais ao funcionamento sadio do cérebro e nós estamos apenas engatinhando no que diz respeito ao conhecimento da bioquímica cerebral.

Livros inteiros tem sido escritos acerca do valor da terapia das megavitaminas para essas doenças e muitos relatórios de pesquisas mostram excelentes resultados.

Ela Funciona ?

É tentador achar que todos os relatórios são válidos e a cura para males como o alcoolismo, esquizofrenia, algumas doenças mentais, dependências de drogas e hiperatividade infantil estão ao alcance das mãos.

Os bioquímicos e os psiquiatras, em sua maioria, recusam-se a aceitar a existência de uma justificativa adequada para a prescrição de doses maciças de vitaminas principalmente por haver tão poucas provas convincentes. O que é preciso são testes controlados sérios para examinar cada área em que se afirma que as megavitaminas funcionam.

Os remédios simples são sempre mais atraentes, especialmente quando se trata de problemas complexos.

A Terapia das Megavitaminas é um desses remédios simples. Só a pesquisa poderá provar se ela é realmente útil.

FATORES NÃO CONFIRMADOS COMO VITAMINAS

Alguns fatores alimentares têm características de vitaminas,mas, por várias razões, não são classificados como vitaminas. Alguns deles têm sido observados apenas em animais (não os humanos).Outros podem ser sintetizados em alguma extensão no corpo,mas necessitam de suplementação dietética em períodos de tensão.Alguns são simplesmente substâncias que são conhecidas por ocorrerem em tecidos humanos para o qual nenhuma finalidade foi ainda identificada.
COLINA

A colina é um componente essencial dos tecidos animais e tem sido classificada como tendo atividade similar à das vitaminas em animais de experimentação.Os humanos, entretanto, podem sintetizar colina a partir de etanolamina e grupos metil derivados da metionina, mas na maior parte do tempo,a colina vem dos fofatídeos da dieta.

FUNÇÕES

A única função da colina é como um componente de grandes moléculas.A lecitina (fosfatidilcolina) é um componente estrutural das membranas celulares e das lipoproteínas plasmáticas,e funciona como um surfactante pulmonar.A esfingomielina também é um componente estrutural.A acetilcolina funciona como um neurotransmissor.

INGESTÃO NA DIETA

A necessidade para colina é elevada durante o crescimento e desenvolvimento e pode exceder a capacidade sintética do recém-nascido(7mg/100kcal de colina) a quantidade encontrada no leite materno.O leite materno também contém fosfatidilcolina e esfingomielina.

As necessidades diárias não são conhecidas, e nenhum efeito tóxico foi observado.A quantidade necessária é influenciada pela quantidade e tipo de gordura, energia total,tipo de carboidratos,quantidade de proteína e quantidade de colesterol na dieta.Estima-se que a dieta média contenha de 400 a 900mg/dia de colina.Esta quantidade é aparentemente adequada para a saúde, mas deve não estar equiparada às necessidades dietéticas.

FONTES

A colina livre está presente no fígado, farinha de aveia,feijões de soja ,alface crespa, couve-flôr,couve e repolho.Ovos,fígado,feijões de soja,bife e amendoins são ricos em fosfatidilcolina.O leite materno eo leite de vaca também são boas fontes.

DEFICIÊNCIA

A deficiência em animais está associada à deficiência de carnitina no fígado e tecidos cardíacos,deposição de gordura no fígado e doença renal hemorrágica.A deficiência de colina em humanos tem sido demonstrada apenas em um estudo metabólico.

A administração de doses farmacológicas de colina parece aliviar os sintomas de discinesia tardia e da doença de Hunington em humanos,mas a dosagem necessária para se atingir esse efeito,de até 20g/dia,parece estar além das necessidades dietéticas específicas para colina.

É possível que pacientes esgotados de lipídeos sob terapia de TPN a um longo período de tempo também possam tornar-se esgotados em colina.

MIOINOSITOL

O inositol é encontrado em frutas,grãos,vegetais ,nozes,leguminosas e carnes de vísceras,tais como fígado e coração. Ele ocorre abundantemente na dieta média,usualmente como fosfolipídeos de inositol e como ácido fítico(hexafosfato de inositol).O ácido fítico interfere com a absorção de cálcio, ferro e zinco.

FUNÇÕES

O mioinositol é o único dos nove isômeros do inositol que tem importância metabólica.Ele é um composto cíclico de seis carbonos com seis grupos hidroxila e uma estrutura semelhante à da glicose.Encontrado em tecidos animais como um componente dos fosfolipídios,está concentrado no cérebro e fluido cerebroespinhal,mas também é encontrado no esqueleto,músculos cardíacos e outros tecidos.O nível de inositol livre è especialmente elevado em todos os òrgãos do trato reprodutivo masculino,particularmente no sêmem.

O papel fisiológico do inositol está relacionado à sua presença no fosfatidilinositol e,portanto,à função dos fosfolipídeos nas membranas celulares.Suas funções incluem a mediação de respostas celulares a estímulos externos,transmissões nervosas e regulação da atividade enzimática.Através de seu papel na síntese de fosfolipídeos, a qual afeta a função das lipoproteínas, ele exerce atividade lipotrópica.

O metabolismo do inositol é afetado pelo conteúdo de colina na dieta, pela quantidade e grau de saturação da gordura da dieta e da composição específica dos ácidos graxos.

DEFICIÊNCIA

Devido ao fato dos pacientes diabéticos apresentarem altos níveis metabólicos de mioinositol na urina e níveis diminuídos nas membranas nervosas,têm-se feito tentativas de se explicar a neuropatia periférica diabética com base na alteração no metabolismo de mioinositol.Entretanto,as descobertas não foram consistentes.

A deficiência de inositol nos animais produz um acúmulo de triglicerídeo no fígado, lipodistrofia intestinal e outras anormalidades.Os sinais da deficiência de inositol não foram encontrados em humanos e uma deficiência não é provável,considerando-se a ocorrência bem espalhada nos alimentos.Entretanto,devido ao fato dela poder possivelmente ocorrer em bebês alimentados com fórmulas sem leite de vaca, a Academia Americana de Pediatria recomenda que este deve ser adicionado a estas fórmulas como uma medida preventiva.

TOXICIDADE

Nenhum efeito tóxico foi relatado. Os pacientes com insuficiência renal crônica apresentam elevados níveis de inositol.

ANTIVITAMINAS
(Antagonistas de Vitaminas ou Antimetabólicos)

Uma antivitamina ou antagonista é uma substância que interfere com a síntese ou metabolismo das vitaminas. Muitos antagonistas de vitaminas são compostos semelhantes,em estrutura,à molécula ativa.Tomando o lugar da vitamina, eles tornam a coenzima inativa. A hidrazida do àcido isonicotínico(INH),um agente quimioterapêutico usado no tratamento da tuberculose,è um antagonista para a piridoxina.A aminopterina,uma droga usada no tratamento da leucemia,é um antagonista para a folacina.O dicumarol,um anticoagulante,age como um antagonista para a vitamina K.

Um outro tipo de antivitamina é a avidina,encontrada na clara de ovo crua ,que se combina com a biotina para formar um composto que não pode ser absorvido a partir do trato intestinal.


Referências Bibliográficas
-------------------------------------------------------------------------------
CAMARGO, Wilson. As Vitaminas do Futuro: O Poder do Verde.1 ed. Rio de Janeiro: Nuad, 1997, 140p.
DUTRA-DE-OLIVEIRA, J.E., MARCHINI, J. Sérgio. Ciências nutricionais.1 ed. São Paulo : Sarvier, 1998, 403 p.
MABAN, L.Kathleen, ESCOTT-STUMP, Sylvia. ALIMENTOS, NUTRIÇÃO E DIETOTERAPIA. 9 ed. São Paulo : Roca,1998,1.179 p.

LIPÍDIOS - CONTINUAÇÃO


O colesterol, além da atividade hormonal, também desempenha um papel estrutural - habita a pseudofase orgânica nas membranas celulares. Muitas vezes chamado de vilão pela mídia, o colesterol é um composto vital para a maioria dos seres vivos.

________________________
Prostaglandinas

Estes lipídios não desempenham funções estruturais, mas são importantes componentes em vários processos metabólicos e de comunicação intercelular. Segundo o químico Michael W. Davidson, da Florida State University, "prostaglandins act in a manner similar to that of hormones, by stimulating target cells into action. However, they differ from hormones in that they act locally, near their site of synthesis, and they are metabolized very rapidly. Another unusual feature is that the same prostaglandins act differently in different tissues". Um dos processos mais importantes controlados pelas prostaglandinas é a inflamação.
Todos estas substâncias têm estrutura química semelhante a do ácido prostanóico, um anel de 5 membros com duas longas cadeias ligadas em trans nos carbonos 1 e 2. As prostaglandinas diferem do ácido prostanóico pela presença de insaturação ou substituição no anel ou da alteração das cadeias ligadas a ele.

A substância chave na biossíntese das prostaglandinas é o ácido araquidônico, que é formado através da remoção enzimática de hidrogênios do ácido linoléico. O ácido araquidônico livre é convertido a prostaglandinas pela ação da enzima ciclooxigenase, que adiciona oxigênios ao ácido araquidônico e promove a sua ciclização. No organismo, o ácido araquidônico é estocado sob a forma de fosfolipídios, tal como o fosfoinositol, em membranas. Sob certos estímulos, o ácido araquidônico é liberado do lipídio de estocagem (através da ação da enzima fosfolipase A2) e rapidamente convertido a prostaglandinas, que iniciam o processo inflamatório. A cortisona tem ação anti-inflamatória por bloquear a ação da fosfolipase A2. Este é o mecanismo de ação da maior parte dos anti-inflamatórios esteróides.
Existem outras rotas nas quais o ácido araquidônico é transformado em prostaglandinas; algumas envolvem a conversão do ácido em um intermediário, o ácido 5-hidroperoxy-6,8,1-eicosatetranóico (conhecido como 5-HPETE), que é formado pela ação da 5-lipoxigenase.
Os anti-inflamatórios não esteróides, como a aspirina, agem bloqueiando as enzimas responsáveis pela formação do 5-HPETE. Desta forma, impedem o ciclo de formação das prostaglandinas e evitam a sinalização inflamatória.

BIOQUÍMICA DA CÉLULA - PARTE 2





Mais um caso de termo químico que se incorpora ao senso comum: os lipídios, há tempos, extrapolaram os livros de química. Definem um conjunto de substâncias químicas que, ao contrário das outras classes de compostos orgânicos, não são caracterizadas por algum grupo funcional comum, e sim pela sua alta solubilidade em solventes orgânicos e baixa solubilidade em água. Juntamente com as proteínas, ácidos nucléicos e carbo-hidratos, os lipídios são componentes essenciais das estruturas biológicas, e fazem parte de um grupo conhecido como biomoléculas. Os lipídios se encontram distribuidos em todos os tecidos, principalmente nas membranas celulares e nas células de gordura.

Existem diversos tipos de moléculas diferentes que pertencem à classe dos lipídios. Embora não apresentem nenhuma característica estrutural comumm todas elas possuem muito mais ligações carbono-hidrogênio do que as outras biomoléculas, e a grande maioria possui poucos heteroátomos. Isto faz com que estas moléculas sejam pobres em dipolos localizados (carbono e hidrogênio possuem eletronegatividade semelhante). Uma das leis clássicas da química diz que "o semelhante dissolve o semelhante": daí a razão para estas moléculas serem fracamente solúveis em água ou etanol (solventes polares) e altamente solúveis em solventes orgânicos (geralmente apolares).

Ao contrário das demais biomoléculas, os lipídios não são polímeros, isto é, não são repetições de uma unidade básica. Embora possam apresentar uma estrutura química relativamente simples, as funções dos lipídios são complexas e diversas, atuando em muitas etapas cruciais do metabolismo e na definição das estruturas celulares.

Os químicos podem separar os lipídios de uma amostra biológica através de uma técnica conhecida como extração; um solvente orgânico é adicionado a uma solução aquosa da amostra e, com um auxílio de um funil de separação, obtém-se a fase orgânica rica em lipídios. Com a evaporação do solvente orgânico obtém-se o lipídio. É desta maneira que, em escala industrial, se obtém o óleo vegetal.


Como veremos a seguir, alguns lipídios têm a habilidade de formar filmes sobre a superfície da água, ou mesmo de formar agregados organizados na solução; estes lipídios possuem uma região, na molécula, polar ou iônica, que é facilmente hidratada. Este comportamento é característico dos lipídios que compõe a membrana celular. Os lipossomos são "microenvelopes" capazes de envolverem moléculas orgânicas e entregarem-nas ao "endereço biológico" correto.


Classificação dos lipídios


A hidrólise ácida dos triacilglicerídios leva aos correspondentes ácidos carboxílicos - conhecidos como ácidos graxos. Este é o grupo mais abundante de lipídios nos seres vivos, e são compostos derivados dos ácidos carboxílicos. Este grupo é geralmente chamado de lipídios saponificáveis, porque a reação destes com uma solução quente de hidróxido de sódio produz o correspondente sal sódico do ácido carboxílico, isto é, o sabão.

Os ácidos graxos possuem um pKa da ordem de 4,8. Isto significa que, em uma solução onde o pH é 4,8, metade da concentração o ácido está ionizada; a um pH maior (7, por exemplo) praticamente todo o ácido encontra-se ionizado, formando um sal com o seu contra-íon; num pH menor (3, e.g.)
todo o ácido encontra-se protonado.




A natureza do cátion (contra-íon) determina as propriedades do sal carboxílico formado. Em geral, sais com cátions divalentes (Ca2+ ou Mg2+) não são bem solúveis em água, ao contrário do formado com metais alcalinos (Na+, K+, etc.), que são bastante solúveis em água e em óleo - são conhecidos como sabão. É por este motivo que, em regiões onde a água é rica em metais alcalinos terrosos, é necessário se utilizar formulações especiais de sabão na hora de lavar a roupa. Na água, em altas concentrações destes sais, ocorre a formação de micelas - glóbulos microscópicos formados pela agregação destas moléculas. Nas micelas, as regiões polares das moléculas de sabão encontram-se em contato com as moléculas de água, enquanto que as regiões hidrofóbicas ficam no interior do glóbulo, em uma pseudofase orgânica, sem contato com a água.

A adição de HCl a uma solução aquosa de sabão provoca a precipitação do ácido graxo, que é pouco solúvel em água e, em solução aquosa, tende a formar dímeros através de fortes ligações hidrogênio.

Os ácidos graxos também podem ser classificados como saturados ou insaturados, dependendo da ausência ou presença de ligações duplas carbono-carbono. Os insaturados (que contém tais ligações) são facilmente convertidos em saturados através da hidrogenação catalítica (este processo é chamado de redução). A presença de insaturação nas cadeias de ácido carboxílico dificulta a interação intermolecular, fazendo com que, em geral, estes se apresentem, à temperatura ambiente, no estado líquido; já os saturados, com uma maior facilidade de empacotamente intermolecular, são sólidos. A margarina, por exemplo, é obtida através da hidrogenação de um líquido - o óleo de soja ou de milho, que é rico em ácidos graxos insaturados



Conhecidos como gorduras neutras, esta grande classe de lipídios não contém grupos carregados. São ésteres do glicerol - 1,2,3-propanotriol. Estes ésteres possuem longas cadeias carbônicas atachadas ao glicerol, e a hidrólise ácida promove a formação dos ácidos graxos correspondentes e o álcool (glicerol).

Nos animais, os TAGs são lipídios que servem, principalmente, para a estocagem de energia; as células lipidinosas são ricas em TAGs. É uma das mais eficientes formas de estocagem de energia, principalmente com TAGs saturados; cada ligação C-H é um sítio potencial para a reação de oxidação, um processo que libera muita energia.

Os TAGs provindo de animais terrestres contém uma maior quantidade de cadeias saturadas se comparados aos TAGs de animais aquáticos. Embora menos eficientes no armazenamento de energia, as TAGs insaturadas oferecem uma vantagem para os animais aquáticos, principalmente para os que vivem em água fria: elas têm uma menor temperatura de fusão, permanecendo no estado líquido mesmo em baixas temperaturas. Se fossem saturadas, ficariam no estado sólido e teriam maior dificuldade de mobilidade no organismo do animal.

Os TAGs podem ser chamados de gorduras ou óleos, dependendo do estado físico na temperatura ambiente: se forem sólidos, são gorduras, e líquidos são óleos. No organismo, tanto os óleos como as gorduras podem ser hidrolisados pelo auxílio de enzimas específicas, as lipases (tal como a fosfolipase A ou a lipase pancreática), que permitem a digestão destas substâncias.

Fosfolipídios



Os fosfolípideos são ésteres do glicerofosfato - um derivado fosfórico do glicerol. O fosfato é um diéster fosfórico, e o grupo polar do fosfolipídio. A um dos oxigênios do fostato podem estar ligados grupos neutros ou carregados, como a colina, a etanoamina, o inositol, glicerol ou outros. As fostatidilcolinas, por exemplo, são chamadas de lecitinas.



Os fosfolipídios ocorrem em praticamente todos os seres vivos. Como são anfifílicos, também são capazes de formar pseudomicrofases em solução aquosa; a organização, entrentanto, difere das micelas. Os fosfolipídios se ordenam em bicamadas, formando vesículas. Estas estruturas são importantes para conter substâncias hidrossolúveis em um sistema aquoso - como no caso das membranas celulares ou vesículas sinápticas. Mais de 40% das membranas das células do fígado, por exemplo, é composto por fosfolipídios. Envolvidos nestas bicamadas encontram-se outros compostos, como proteínas, açúcares e colesterol


Esfingolipídios


A principal diferença entre os esfingolipídios e os fosfolipídios é o álcool no qual estes se baseiam: em vez do glicerol, eles são derivados de um amino álcool. Estes lipídios contém 3 componentes fundamentais: um grupo polar, um ácido graxo, e uma estrutra chamada base esfingóide - uma longa cadeia hidrocarbônica derivada do d-eritro-2-amino-1,3-diol. É chamado de base devido a presença do grupo amino que, em solução aquosa, pode ser convertido para o respectivo íon amônio. A esfingosina foi o primeiro membro desta classe a ser descoberto e, juntamente com a di-hidroesfingosina, são os grupos mais abundantes desta classe nos mamíferos. No di-hidro, a ligação dupla é reduzida. O grupo esfingóide é conectado ao ácido graxo graças a uma ligação amídica. A esfingomielina, encontrada em muitos animais, é um exemplo de esfingolipídio
Os vários tipos de esfingolipídios são classificados de acordo com o grupo que está conectado à base esfingóide. Se o grupo hidroxila estiver conectado a um açúcar, o composto é chamado de glicosfincolipídio. O grupo pode ser, também, um éster fosfófico, como a fosfocolina, na esfingomielina. Gangliosídios são glicosfingolipídios que contém o ácido N-acetilneurâmico (ácido siálico) ligado à cadeia oligossacarídica. Estas espécies são muito comuns no tecido cerebral.

________________________
Esteróides


Os esteróides são lipídios derivados do colesterol. Eles atuam, nos organismos, como hormônios e, nos humanos, são secretados pelas gônadas, córtex adrenal e pela placenta. A testosterona é o hormônio sexual masculino, enquanto que o estradiol é o hormônio responsável por muitas das características femininas.

15 de fev. de 2010

BIOQUÍMICA CELULAR



INTRODUÇÃO AOS COMPONENTES BIOQUÍMICOS DA CÉLULA

Desde o descobrimento das células, o se humano possui a preocupação em classificá-las e sendo, descobrir as estruturas básicas da célula ou as estruturas químicas que a célula tem.
Em relação às estruturas químicas, pode ser dividida em dois grandes grupos:

Substâncias inorgânicas: água e sais minerais
Substâncias orgânicas: vitaminas, carboidratos, lipídios, proteínas e ácidos nucléicos.

Para compreender melhor o que foi dito acima, deve-se ter como base a introdução e então ter como aprofundamento o que virá a seguir.


1-SUBSTÂNCIAS INORGÂNICAS

1.1-ÁGUA
A água é um dos componentes mais importantes, e também o mais abundante de todo o mundo. Sua necessidade é vital para os seres vivos. Fora da célula, os nutrientes estão dissolvidos em água, que, facilita a passagem através da membrana células e, dentro da célula, é o meio onde ocorre a maioria das reações químicas.

A molécula da água é composta de dois átomos de hidrogênio e um de oxigênio (H²O), interligados por uma ligação iônica, por isso exige uma grande quantidade de calor para . Uma propriedade exclusiva da água é a coesão de suas forças que fazem com que essa substância seja fluida, adquirindo assim a forma do recipiente na qual se encontrar. Esta coesão é responsável pela tensão superficial que permite a alguns insetos pousar na superfície da água.

Ela é considerada o solvente universal, pois tem grande força de adesão (união de moléculas polares). As substâncias que dissolvem na água são chamadas de hidrofílicas e as que não se dissolvem são chamadas de hidrofóbicas.
A água está presente na maioria das reações químicas e essa reação pode ser efetuada de duas maneiras:
Reações de síntese por desidratação: por perda de água. Quando na união há a liberação de uma molécula de água;

Reações de hidrólise (do grego hydro= água e lise=quebra): a molécula é quebrada em duas e nesse processo há a entrada de molécula de água.

Como propriedades estruturais e químicas que tornam adequada para sua função nas células vivas podemos dizer que: ela é uma molécula polar, pois tem distribuição desigual das cargas, capaz de formar quatro pontes de hidrogênio com as moléculas de células vizinhas e por isso necessita de uma grande quantidade de calor para a separação das moléculas (100ºC); é um excelente meio de dissolução ou solvente; sua polaridade facilita a separação e a recombinação dos íons de hidrogênio (H+) e íons de hidróxido (OH-), é o reagente essencial nos processos digestivos, onde as moléculas maiores são degradadas em menores e faz parte de várias reações de síntese nos organismos vivos; e, as pontes de hidrogênio são relativamente fortes a tornam um excelente tampão de temperatura.

Em relação aos seres vivos, podemos enumerar:

Solvente de líquidos corpóreos orgânicos e inorgânicos;

Meio de transporte de íons e moléculas, ou seja, permite o intercâmbio contínuo de íons e moléculas entre os líquidos extra e intracelular, como por exemplo a sua tendência de subir pelas paredes de tubos finos ou se deslocar por espaços estreitos existentes em materiais porosos. Essa tendência é chamada de capilaridade. Nas plantas, essa capilaridade atua no deslocamento da seiva bruta, das raízes, até o topo das árvores;

Regulação térmica (fato já citado anteriormente, mesmo parecendo que há um pleonasmo, não há. Antes foi citado como uma propriedade química, contrariamente deste momento, da qual é citada também como função para manter a vitalidade dos seres vivos);

Ação lubrificante, ela contribui para diminuir o atrito nas articulações ósseas;
Matéria-prima para a realização da fotossíntese;
Atuação no metabolismo. Na maioria das reações de anabolismo e catabolismo a água participa como reagente ou é gerada como produto. Isto ocorre através da síntese de desidratação e da hidrólise

1.1-SAIS MINERAIS

Os minerais são nutrientes de função plástica e reguladora do organismo, sendo fundamentais ao metabolismo celular. Estes são nutrientes abundantes em frutas e verduras. Outros minerais, como podemos usar como exemplo o iodo e o flúor, mesmo sendo necessários em pequenas quantidades, podem prevenir o aparecimento de doenças como a cárie dentária e o bócio.

Os sais são fundamentais para a matéria viva, são encontrados nos organismos sob duas formas básicas: solúvel e insolúvel.

Os insolúveis acham-se imobilizados como componentes na estrutura esquelética. Já os solúveis estão dissolvidos na água na forma de íons.
Como dito no nome são os sais encontrados nos minérios, têm função esquelética ou estrutural.
Observemos os principais sais minerais:

Cálcio - Faz parte da formação e da manutenção dos ossos e dentes. É encontrado no leite e derivados

Ferro - Componente da hemoglobina. Encontrado nas carnes e leguminosas

Zinco - Constituinte das enzimas, células com muitas funções dentro do organismo. Encontrado em carnes e ovos

Cloro - Participa da regulação e do equilíbrio hídrico. Encontrado no Sal comum de cozinha

Potássio - Participa do processo de contração muscular e da síntese de glicogênio. Encontrado na carne, leite e frutas

Fósforo - Atua na formação de dentes e ossos, indispensável para o sistema nervoso e muscular Encontrado em carnes, porco, frango e repolho

Magnésio - Ajuda na contração muscular e metabolismo energético. Sua ausência causa baixa capacidade aeróbica e perda de transpiração. Existente em legumes e nozes

Sódio - Importante para a transmissão nervosa, contração muscular e equilíbrio de fluidos no organismo. Há no sal, azeite e alimentos processados

Flúor - É necessário para amarrar o cálcio aos ossos. Previne a dilatação das veias, cálculos da vesícula e paralisia. Pode ser encontrado na maioria dos cremes dentário


2-SUBSTÂNCIAS ORGÂNICAS


2.1-PROTÍDIOS
Mais de três aminoácidos até com, unidos entre si, formam um polipeptídio. Mais que cem aminoácidos, formam uma proteína. Podemos usar de exemplo a hemoglobina, pigmento vermelho do sangue, constituído de 574 aminoácidos, a exceção está na insulina, uma proteína relativamente pequena que contém cinquenta e uma ligações peptídicas. Deve-se levar em conta que, aminoácidos são moléculas orgânicas formadas por átomos de carbono, hidrogênio, oxigênio e nitrogênio unidos entre si de maneira característica. Alguns podem conter enxofre.

Mas, tendo como foco as proteínas, estas são um polímero linear de aminoácidos unidos por ligações peptídicas. Sua estrutura é formada por uma variedade de vinte aminoácidos, chamados essenciais, que permitem a proteína uma variedade de formas e funções na célula.



Sua estrutura está em três níveis hierárquicos de organização. A estrutura primária é a sequência de aminoácidos dispostos linearmente, constituindo a cadeia polipeptídica. A estrutura secundária se refere a conformação espacial que a proteína toma, dependente da posição de certos aminoácidos, estabilizando a ponte de hidrogênio. Mas, quando as pontes de hidrogênio estabelecem-se entre certos aminoácidos, o esqueleto se dobra dispondo-as em formas geométricas. A estrutura terciária resulta de interações – hidrofóbicas, ligações de sulfeto, forças de Van der Waal e interações iônicas – que estabilizam a estrutura secundária, dando compactação ou conformação a proteína (Fibrosas ou globulares). E, a estrutura quaternária resulta da combinação de dois ou mais polipeptídicos, chamados de subunidades, que dão origem a moléculas de grande complexidade que se mantém unidas e interagem, como por exemplo a hemoglobina.





Em relação á classificação, podem ser classificadas em:

Proteínas simples: São aquelas que através da hidrólise, fornecem apenas moléculas de aminoácidos. Diferem-se das outras pela sequência dos aminoácidos na molécula. Ex: albumina e globulina;


Proteínas compostas ou conjugadas: São as que, na hidrólise, além de aminoácidos, fornecem os chamados grupos prostéticos (Substância de composição diferente). Ex: Mucina, osseína, tendomucóides.


As nucleoproteínas possuem um ácido nucléico como grupo prostético. Como, por exemplo a caseína e a ovovitelina. As cromoproteínas possuem um grupo prostético a porfirina, apresentando sempre uma coloração. Possuem no centro de suas moléculas um elemento metálico, (como por exemplo o Magnésio na clorofila e o Ferro na hemoglobina).

Sua função é determinada por sua estrutura tridimensional e da capacidade de ligaram-se covalentemente à outras moléculas, que neste caso são ligantes. O local de fixação dos ligantes nas proteínas e os ligantes correspondentes possuem alto grau de especificidade, ou seja, são complementares. As proteínas controlam o fluxo de íons através da membrana, regulam a concentração dos metabólicos, confere rigidez á célula, catalisam uma infinidade de reações químicas, atuam como sensores e chaves, produzem movimento e controlam a função genética.


2.2-ENZIMAS

As enzimas são proteínas especiais de ação catalisadora, estimulando ou desencadeando reações químicas importantíssimas na vida, que dificilmente se realizariam sem a presença delas. São produzidas pelas células, mas podem evidenciar sua atividade intra ou extra celularmente. Sem a ação catalítica das enzimas nas reações que comandam o metabolismo celular, certamente não haveria vida na Terra. Elas aceleram de 100 milhões a 100 bilhões de vezes a velocidade das reações químicas, criando, uma condição compatível com a dinâmica da vida.


Na grande maioria, as reações químicas dentro do organismo são extremamente lentas e nem sempre ideal para a sobrevivência do ser vivo. A solução para este problema seria o aumento da temperatura, mas não seria ideal, pois as proteínas seriam desnaturadas. Para isto existem no organismo proteínas extremamente importantes para o metabolismo em que aumentam a velocidade das reações químicas dentro do organismo sem elevar a temperatura, e, são partículas intactas, no exercer de sua função continuam da mesma maneira. Outra característica das enzimas é o fato de serem extremamente específicas, prevalecendo a teoria da chave-fechadura: ela diz que, as enzimas tem o formato ideal que encaixa perfeitamente no substrato em que se quer fazer a reação. Um dos fatores que influenciam diretamente as suas atividades é o pH ou índice de acidez do organismo, na qual se o mesmo não for favorável, a enzima pode se tornar inativa.
De maneira geral, elas apresentam as seguintes características:


São considerados como “substratos” as substâncias cuja qual agem as enzimas. Cada enzima atua exclusivamente sobre determinado (s) substratos, não tendo qualquer efeito sobre os outros, sendo notável sua especificidade da ação enzimática. Admite-se que isto justifica em função do contorno que a superfície da molécula enzimática assume, na qual se encaixam as moléculas dos substratos. Este encaixe proporcionaria uma maior aproximação entre os pontos relativos das moléculas reagentes, acelerando assim, a velocidade da reação. Todavia, realizada a sua ação, a enzima se mostra intacta. Ou seja, a enzima acelera a reação, mas não participa dela;


Sua atividade é reversível, pois podem ocorrer nos dois sentidos da reação. A mesma enzima acelera a produção do composto C pelos reagentes A & B, pode, em circunstância diversa, ativar a decomposição de C em A & B.
Dentro de certos limites, a intensidade de ação enzimática duplica ou triplica a cada 10ºC que se eleva na temperatura do ambiente. Da mesma forma, a cada 10ºC que se reduz a temperatura ambiental, a atividade enzimática é reduzida pela metade ou terça parte. Mas, o melhor ponto de ação de muitas enzimas nem sempre é igual. Mas, em um mesmo organismo, todas as suas enzimas tem o mesmo ponto. A partir da temperatura ideal, qualquer elevação térmica levará a enzima a diminuir sua ação, até se desnaturar. Na desnaturação, a molécula protéica a enzima se desenrola, perde o seu contorno característico e deixa, portanto, de exercer sua função;

Como dito antes, as enzimas dependem do pH para o seu funcionamento. Algumas apenas agem em pH ácido; outras, apenas com pH alcalino (Básico). Ainda dentro dessas preferências, algumas exigem pH muito ácido, outras pH menos ácido. O mesmo acontece com as que preferem pH pouco alcalino ou muito alcalino.


2.3-GLICÍDIOS

Também conhecidos como açúcares, carboidratos ou hidratos de carbono, são substâncias constituídas fundamentalmente por átomos de carbono, hidrogênio e oxigênio. No momento em que é falado a palavra açúcar, remete-nos ao sabor adocicado, mas nem todos os glicídios são adocicados. Para isso, os cientistas preferem usar o termo glicídio, com o intuito de evitar mal entendidos.


Essencial para a sobrevivência humana, é o elemento mais encontrado na natureza.

Em relação à classificação, podem ser classificados em três categorias: monossacarídeos, dissacarídeos e polissacarídeos.

Os monossacarídeos são os que apresentam moléculas menores e os glicídios mais simples. São os que não sofreram hidrólise, além apresentarem entre três e sete carbonos na molécula na qual a fórmula geral é Cn(H²O)n. Na fórmula, n representa um número entre três e sete. E, seus nomes são dados de acordo com o número de átomos de carbono na molécula:

Trioses – três carbonos;
Tetroses – quatro carbonos;
Pentoses – cinco carbonos;
exoses – seis carbonos;
Heptoses – sete carbonos;

São de interesse biológico as pentoses e as hexoses.

Os dissacarídeos são as moléculas formadas pela união de dois ou mais monossacarídeos, através da hidrólise. A sacarose (C¹²H²²O¹¹), o principal açúcar presente na cana-de-açúcar, sendo formado pela união da glicose com a frutose.

Podemos citar entre os principais a maltose, sacarose e galactose.

Maltose + H²O - Glicose + Glicose. Encontrada na hidrólise do amido;
Sacarose + H²O – Glicose + Frutose. Encontrada na cana-de-açúcar;
Lactose + H²O – Glicose + Galactose. Encontrada no leite.

E, os polissacarídeos são os constituídos de grande número de moléculas de monossacarídeos (Mil a seis mil). Como exemplo dos mesmos, podemos citar o amido, o glicogênio e a celulose.

O amido é uma substância característica das plantas e algas. Suas moléculas são formadas pela reunião de milhares de moléculas de glicose. Na abundância de glicose as plantas fabricam o amido. No momento de necessidade, o amido é quebrado, formando a glicose novamente e usando-a como fonte de matéria-prima para as células. Os animais fabricam o polissacarídeo glicogênio, cuja função é semelhante á do amido para as plantas. Após de uma refeição rica em glicídios, as células do fígado absorvem moléculas de glicose do sangue, unindo-as para formar moléculas de glicogênio, bastante semelhante às moléculas de amido.Quando a taxa de glicose no sangue reduz, fato ocorrente entre as refeições, as células do fígado quebram o glicogênio, convertendo-o em glicose. Estas são lançadas no sangue e chegam a todas as células do corpo, ou seja, o glicogênio armazenado no fígado é uma maneira de guardar energia para os momentos de necessidade. Ele acumula-se também no fígado e músculos.

Nas plantas está na forma de celulose formando a parede das células vegetais, tendo papel de sustentação dessas células.

Há um polissacarídeo que, além do carbono, hidrogênio e oxigênio, apresenta em sua molécula o nitrogênio. É a quitina, encontrada na parede celular dos fungos e exoesqueleto de animais artrópodes (insetos, aracnídeos, crustáceos, quilópodes e diplópodes).
Tanto a quitina como a celulose são de difícil digestão.

12 de fev. de 2010

Rabo humano ou rabo vestigial



Em 2002, nasceu um bebê na India com rabo vestigial, pessoas acreditaram ser uma reencarnação de um Deus Hindu. O bebê de apresentava uma cauda de mais de 10 cm aos 11 meses.

Sim, é verdade. Embora seja bastante rara, com cerca de 100 casos documentados na literatura da medicina, existe também essa anomalia. Trata-se de bebês que nascem com uma cauda (rabinho mesmo) bem desenvolvido, formado ainda durante a gestação.

Mas como isso acontece? Na verdade, não se sabe ao certo, mas sabemos que nossos ancestrais hominídeos tinham rabo e com a evolução esta estrutura foi perdida e isso aconteceu bem antes de se tornarem bípedes (andam em duas patas, ou pés). Hoje em dia temos genes que são encarregados de produzir a morte celular das células que estavam destinadas a formar o rabo e isso já vem acontecendo a milhares de anos. Acredita-se que de alguma forma, ocorre nessas pessoas uma mutação destes genes e aquelas células não são destruídas e acabam formando o rabinho!

No entanto, há dois tipos de rabo humano: o falso rabo e o rabo humano verdadeiro, muito mais raro. O falso rabo não tem ossos nem cartilagem, é pele e gordura. Porém, o rabo humano verdadeiro tem nervos e músculos e, às vezes, até cartilagens ou vértebras. Neste caso, o rabinho possui uma musculatura associada as vértebras que permite seu movimento

11 de nov. de 2009

QUE HISTÓRIA É ESSA DE GRIPE SUÍNA?

A gripe suína é uma forma de gripe que tem início nos porcos e passa para o ser humano. O surto atual vem sendo causado por um vírus composto por segmentos dos genes humano, da ave e do porco, com alto grau de letalidade. É a primeira vez que esta combinação genética ocorre e, por isso, ainda não há vacina contra a doença.A gripe suína se parece com a gripe normal. O indivíduo tem dor de cabeça, dores musculares e nas juntas, ardor nos olhos, febre acima de 39 ºC, raramente apresenta diarréia, e com início abrupto. Como o contágio da gripe suína é feito por meio de gotículas de saliva.No Brasil, ainda não existe um método para diagnosticar o vírus específico da gripe suína. Só é possível o diagnóstico, por causa da comparação feita com o vírus causador da gripe, o influenza, seja ele suíno ou não.Ainda não há também uma vacina contra a gripe suína. Porém, está sendo desenvolvida uma vacina que vai proteger contra várias outras formas de gripe de vírus que estão circulando pelo mundo e que têm mais chances de acontecer agora.É preciso ter cuidado. O vírus apresenta um estágio de latência por volta dos sete dias, o que pode levar a um falso diagnóstico negativo.

PREVENÇÃO: · Usar máscaras cirúrgicas descartáveis durante toda a permanência nas áreas afetadas. Substituir sempre que necessário;· Ao tossir ou espirrar, cobrir o nariz e a boca com um lenço, preferencialmente descartável;· Evitar locais com aglomeração de pessoas;· Evitar o contato direto com pessoas doentes;· Não compartilhar alimentos, copos, toalhas e objetos de uso pessoal;· Evitar tocar olhos, nariz ou boca;· Lavar as mãos frequentemente com sabão e água, especialmente depois de tossir ou espirrar;· Em caso de adoecimento, procurar assistência médica e informar história de contato com doentes e roteiro de viagens recentes a esses países;· Não usar medicamentos sem orientação médica;


3 de nov. de 2009

células tronco



















O que são células-tronco?Células-troncos são células mestras que têm a capacidade de se transformar em outros tipos de células, incluindo as do cérebro, coração, ossos, músculos e pele.O que são células-tronco embrionárias?Células-tronco embrionárias são aquelas encontradas em embriões. Essas células têm a capacidade de se transformar em praticamente qualquer célula do corpo. São chamadas pluripotentes. É essa capacidade que permite que um embrião se transforme em um corpo totalmente formado. Cerca de cinco dias após a fertilização, o embrião humano se torna um blastocisto-uma esfera com aproximadamente 100 células. As encontradas em sua camada externa vão formar a placenta e outros órgãos necessários ao desenvolvimento fetal do útero. Já as existentes em seu interior formam quase todos os tecidos do corpo. Estas são as células-tronco de embriões usadas nas pesquisas.O que são células-tronco adultas?Esse nome é um erro, porque são encontradas em tecidos maduros, no corpo de crianças e adultos. As células-tronco de adultos são mais especializadas que as embrionárias e dão origem a tipos específicos de células. São chamadas multipotentes. Algumas pesquisas sugerem que as células-tronco adultas podem se transformar em tipos muito mais variados de células do que se supunha anteriormente.Qual a fonte de células-tronco embrionárias?Os cientistas geralmente obtém essas células de embriões descartados em clínicas de fertilidade. Os embriões criados pelo espermatozóide e óvulo de um casal -- e que não são implantados no útero nem destruídos pela clínica -- podem servir como fontes de células-tronco.Quais os possíveis usos médicos das células-tronco?As qualidades de transformação das células-tronco podem representar tratamentos para muitas doenças que afetam milhões de pessoas no mundo. Por exemplo, uma injeção de células-tronco no cérebro de um portador de mal de Parkinson pode regenerar as funções dos neurônios do paciente e levar à cura. Outras terapias podem incluir diabete, mal de Alzheimer, derrames, enfartes, doenças sanguíneas ou na espinha e câncer.Que outros usos médicos são possíveis?Com o uso dessas células, os cientistas poderiam testar os efeitos terapêuticos e colaterais de drogas em tecidos humanos, sem ter a necessidade de utilizar animais. As células-tronco poderão também ser usadas no tratamento de problemas genéticos.As células-tronco de embriões são melhores que as adultas?Não se sabe por enquanto. Apesar de poder crescer em quantidade ilimitada em laboratório, as células embrionárias podem ser rejeitadas pelo sistema imunológico do paciente quando transplantadas, podendo inclusive gerar tumores. Como as células-tronco adultas oferecem a possibilidade de ser retiradas do próprio paciente, evita-se o risco de rejeição. No entanto, ainda há dúvidas sobre sua capacidade de transformação em outras células. Além disso, sua produção em laboratório na quantidade necessária é mais difícil.A que a polêmica diz respeito?Para algumas pessoas, como grupos religiosos e antiaborto, a destruição de um embrião é o mesmo que matar um ser humano.
As células-tronco são classificadas como:Totipotentes ou embrionárias - São as que conseguem se diferenciar em todos os 216 tecidos (inclusive a placenta e anexos embrionários) que formam o corpo humano.
Pluripotentes ou multipotentes - São as que conseguem se diferenciar em quase todos os tecidos humanos, menos placenta e anexos embrionários. Alguns trabalhos classificam as multipotentes como aquelas com capacidade de formar um número menor de tecidos do que as pluripotentes, enquanto outros acham que as duas definições são sinônimas.
Oligopotentes - Aquelas que conseguem diferenciar-se em poucos tecidos.
Unipotentes - As que conseguem diferenciar-se em um único tecido.Quais as funções naturais das células-tronco no corpo humano?Elas funcionam como células curingas, ou seja, teriam a função de ajudar no reparo de uma lesão. As células-tronco da medula óssea, especialmente, têm uma função importante: regenerar o sangue, porque as células sangüíneas se renovam constantemente.Onde ficam as células-tronco?As células-tronco totipotentes e pluripotentes (ou multipotentes) só são encontradas nos embriões.
As totipotentes são aquelas presentes nas primeiras fases da divisão, quando o embrião tem até 16 - 32 células (até três ou quatro dias de vida). As pluripotentes ou multipotentes surgem quando o embrião atinge a fase de blastocisto (a partir de 32 -64 células, aproximadamente a partir do 5.o dia de vida) - as células internas do blastocisto são pluripotentes enquanto as células da membrana externa do blastocisto destinam-se a produzir a placenta e as membranas embrionárias.
As células-tronco oligopotentes ainda são objeto de pesquisas, mas podemos dizer como exemplo que são encontradas no trato intestinal.
As unipotentes estão presentes no tecido cerebral adulto e na próstata, por exemplo.O que torna a célula-tronco capaz de formar um tecido ou outro?A ordem ou comando que determina, durante o desenvolvimento do embrião humano, que uma célula-tronco pluripotente se diferencie em um tecido específico, como fígado, osso, sangue etc, ainda é um mistério que está sendo objeto de inúmeras pesquisas.

2 de nov. de 2009

EXERCÍCIOS -EVOLUÇÃO


1-Sobre os conceitos básicos de evolução, são feitas as seguintes afirmativas:
I. A forma do corpo de uma foca e do pinguim, que os adapta bem à natação, é exemplo de
irradiação adaptativa.
II. Danças nupciais em peixes, canto de insetos e coaxar de sapos são exemplos de isolamento
reprodutivo.
III. "O bicho-pau pode viver nas árvores pois se assemelha a um galho" é uma frase que apresenta
uma concepção darwinista de evolução.
Assinale a opção que contém a(s) afirmativa(s) correta(s):
a) Apenas I.
b) Apenas II.
c) Apenas III.
d) Apenas I e III.
e) Apenas II e III.

2-A competição por um recurso de disponibilidade limitada é um dos pressupostos do conceito de
seleção natural na teoria evolutiva de Darwin. Sobre esta declaração, é correto afirmar que é:
a) verdadeira, pois o conceito de seleção natural do organismo melhor adaptado pressupõe que os
predadores mais eficazes levem suas presas à extinção.
b) falsa, pois apenas a competição interespecífica por um recurso de disponibilidade limitada
contribui efetivamente para o conceito de seleção natural.
c) verdadeira, pois apenas em decorrência da competição por um recurso de disponibilidade
limitada é que há a seleção do organismo melhor adaptado.
d) verdadeira, pois tanto a competição intra-específica quanto a interespecífica são comportamentos
que apresentam um alto grau de expressividade gênica.
e) falsa, pois apenas a competição intra-específica por um recurso de disponibilidade limitada
contribui efetivamente para o conceito de seleção natural.
3-As cobras estão entre os animais peçonhentos que mais causam acidentes no Brasil,
principalmente na área rural. As cascavéis ('Crotalus'), apesar de extremamente venenosas, são
cobras que, em relação a outras espécies, causam poucos acidentes a humanos. Isso se deve ao ruído de seu "chocalho", que faz com que suas vítimas percebam sua presença e as evitem. Esses animais Só atacam os seres humanos para sua defesa e se alimentam de pequenos roedores e aves. Apesar disso, elas têm sido caçadas continuamente, por serem facilmente detectadas.
Ultimamente os cientistas observaram que essas cobras têm ficado mais silenciosas, o que passa a
ser um problema, pois, se as pessoas não as percebem, aumentam os riscos de acidentes.
A explicação darwinista para o fato de a cascavel estar ficando mais silenciosa é que
a) a necessidade de não ser descoberta e morta mudou seu comportamento.
b) as alterações no seu código genético surgiram para aperfeiçoá-Ia.
c) as mutações sucessivas foram acontecendo para que ela pudesse adaptar-se.
d) as variedades mais silenciosas foram selecionadas positivamente.
e) as variedades sofreram mutações para se adaptarem à presença de seres humanos.

4.Se os filhos de atletas nascessem com corações maiores que a média da população, isso seria
considerado um reforço para a teoria
a) neodarwinista.
b) da seleção natural.
c) da sobrevivência do mais apto.
d) da luta pela reprodução diferencial.
e) da herança dos caracteres adquiridos.

5-Leia os trechos seguintes, extraídos de um texto sobre cor de pele na espécie humana.
A pele de povos que habitaram certas áreas durante milênios adaptou-se para permitir a produção de vitamina D. À medida que os seres humanos começaram a se movimentar pelo Velho Mundo há cerca de 100 mil anos, sua pele foi se adaptando às condições ambientais das diferentes regiões. A cor da pele das populações nativas da África foi a que teve mais tempo para se adaptar porque os primeiros seres humanos surgiram ali.("Scientific American Brasil", vol. 6, novembro de 2002.)
Nesses dois trechos, encontram-se subjacentes ideias
a) lamarckistas.
b) darwinistas.
c) neodarwinistas.
d) da Teoria Sintética da Evolução.
e) sobre especiação.
6-Numere a segunda coluna de acordo com a primeira.
1 - Lamarckismo
2 - Darwinismo
( ) A falta de função do 3º molar (ciso) nos seres humanas, decorrente dos seus hábitos
alimentares, tem induzido seu desaparecimento.
( ) Para que mamíferos cetáceos se adaptassem à natação, suas patas foram aos poucos se
transformando em nadadeiras.
( ) O uso constante de antibióticos em hospitais tem contribuído para a seleção de um número
crescente de bactérias resistentes a eles.
( ) Para se proteger de predadores, o bicho-pau desenvolveu forma e cor semelhante à de galhos
secos.
Marque a alternativa que atribui a cada afirmação a respectiva ideia ou teoria evolutiva.
a) 1, 2, 1, 2
b) 1, 1, 2, 1
c) 1, 2, 1, 1
d) 2, 2, 1, 2
e) 1, 1, 2, 2
7-Analise o texto abaixo:
"Em todo animal que não tenha ainda se desenvolvido completamente, o uso frequente a repetido de um órgão qualquer fortalece, pouco a pouco, esse órgão, desenvolve-o, aumenta-o, tornando-o mais forte, com uma força proporcional ao tempo de uso, enquanto o desuso de tal órgão enfraquece-o aos poucos, deteriora-o, diminui progressivamente suas faculdades e acaba por fazê-lo desaparecer."(Filosofia Zoológica,1809)
O texto acima deve ser atribuído a
a) Darwin, para explicar a seleção natural.
b) Lamarck, para explicar o criacionismo.
c) Mendel, para explicar a genética.
d) Darwin, para explicar o evolucionismo.
e) Lamarck, para explicar o evolucionismo.
8-Em relação à evolução biológica de coelhos de uma determinada região:
I - O coelho evoluiu de ancestrais de orelhas curtas que se desenvolveram gradativamente pelo
esforço do animal em ouvir a chegada dos predadores.
II - Os ancestrais dos coelhos apresentavam tamanhos variáveis de orelhas; o predatismo dos
carnívoros selecionou aqueles de orelhas mais longas.
III - Os coelhos de orelhas longas conseguem deixar um maior número de descendentes que os de
orelhas curtas.
IV - Os coelhos de orelhas longas, adquiridas pela necessidade de perceber a aproximação dos
predadores, transmitem essa característica para seus descendentes.
Considerando as afirmativas acima, selecione a alternativa correta:
a) I e II são lamarckistas e III e IV são darwinistas.
b) II e III são lamarckistas e I e IV são darwinistas.
c) I e IV são lamarckistas e II e III são darwinistas.
d) III e IV são lamarckistas e I e II são darwinistas.
e) I e III são lamarckistas e II e IV são darwinistas.
9-Analise a lista:
Carl Linée (Lineu) - (1707-1778)
Natureza dos Estudos Desenvolvidos
Propôs um modelo para a classificação biológica moderna baseado nas semelhanças e
diferenças entre estruturas dos seres vivos.
Comentários
A proposta de classificação de Lineu foi logo deixada de lado pelos biólogos, uma vez que
hoje a espécie é tomada como ponto de partida para classificação.
Robert Kock (1843-1910)
Natureza dos Estudos Desenvolvidos
Kock tornou-se muito conhecido pelos seus trabalhos sobre origem da vida, defendendo a
geração espontânea.
Comentários
Suas pesquisas na área da medicina levaram-no à descoberta do bacilo da tuberculose.
Gregor Mendel (1822-1884)
Natureza dos Estudos Desenvolvidos
Seus trabalhos sobre a transmissão de características hereditárias não foram valorizados de
imediato pela comunidade científica, logo após a sua publicação.
Comentários
As descobertas de Mendel forneceram elementos importantes para a formulação das teorias
neodarwinistas sobre o processo evolutivo.
Charles Darwin (1809-1882)
Natureza dos Estudos Desenvolvidos
Publicou o livro "A Origem das Espécies", no qual propõe um mecanismo consistente para
explicar o processo evolutivo.
Comentários
Os estudos de Mendel foram decisivos para que Darwin elaborasse a teoria da evolução e
sugerisse como se dá o processo de seleção natural.
James Watson (1928- )
Natureza dos Estudos Desenvolvidos
Juntamente com Francis Crick (1916-2004) inventou uma técnica que permitiu manipular a
molécula de DNA, iniciando assim a era da engenharia genética.
Comentários
Seus trabalhos fundaram as bases da biologia molecular e sem suas propostas
revolucionárias não seriam possíveis os testes de paternidade, os estudos sobre os genomas, os
transgênicos e a clonagem.
a) Selecione, entre os cientistas citados, um, para o qual a descrição da natureza dos estudos
desenvolvidos, esteja correta, e outro, cuja descrição da natureza dos estudos desenvolvidos esteja
errada. Neste último caso, justifique por que a descrição está errada.
Correta: Charles Darwin.
Errada: Robert Kock.
Justificativa: Trabalhou com o bacilo da tuberculose e não com a origem da vida.
b) Considerando os dois cientistas escolhidos em (a), responda se os comentários apresentados,
sobre os estudos que eles desenvolveram, condizem com a realidade. Justifique sua resposta.
Os comentários sobre Charles Darwin não condizem com a realidade, já que Darwin não
utilizou os trabalhos de Mendel.
Os comentários sobre Robert Kock são verdadeiros, já que foi descobridor do bacilo da
tuberculose.
10-Quando se considera o processo evolutivo, se tem em mente que as populações experimentam
um conjunto de mudanças ao longo do tempo. Sobre esse tema, analise as proposições com
verdadeiro ou falso.
( ) As mutações podem ser favoráveis, indiferentes ou desfavoráveis, dependendo do ambiente
em que vivem os organismos mutados.
( ) Casamento entre pessoas aparentadas (cruzamentos consanguíneos) aumenta a frequência de
alelos deletérios na população.
( ) A seleção natural atua sobre a diversidade genética intra-específica; os indivíduos mais bem
adaptados ao ambiente são selecionados.
( ) A semelhança entre a estrutura interna da asa do morcego e a do membro superior humano é
indicativa do tipo de evolução denominado 'convergência adaptativa'.
( ) O acaso pode provocar alterações significativas na frequência de diferentes alelos.
V F V F V
11-Os registros fósseis evidenciam que a conquista do ambiente terrestre pelos seres vivos ocorreu
na era paleozóica, a partir do ambiente aquático.
a) Explique por que a conquista do ambiente terrestre pelos animais foi posterior à dos vegetais.
Os animais, por serem heterotróficos, necessitavam de ambiente com disponibilidade de
alimentos orgânicos que somente se tornaram disponíveis com a colonização do continente
pelos vegetais, que são autotróficos e capazes de sintetizar substâncias orgânicas a partir de
substâncias inorgânicas (água, gás carbônico e sais minerais) e energia solar. Nesse processo,
os vegetais liberam o oxigênio para a atmosfera, transformando-a de redutora para oxidante,
condição propícia para os animais aproveitarem de maneira mais eficiente os carboidratos na
respiração aeróbica. Além disso, a combinação de moléculas de oxigênio, formando o ozônio,
permitiu que raios ultravioleta fossem filtrados, diminuindo a incidência desse tipo de
radiação sobre a superfície terrestre.
b) Explique duas características morfofisiológicas que permitiram a ocupação do ambiente terrestre pelos animais.
Poderão ser escolhidas duas destas opções, entre outras:
1. Desenvolvimento de exoesqueleto quitinoso, impermeável à água, para evitar dessecação do
corpo quando em contato com a atmosfera.
2. Desenvolvimento de escamas epidérmicas recobrindo o corpo, como no caso dos répteis,
para evitar dessecação quando em contato com a atmosfera.
3. Desenvolvimento de sistema de locomoção adequado à ocupação do novo ambiente (patas
e/ou asas), permitindo a busca de novas fontes de alimentos e novos hábitats, bem como a fuga
para longe dos predadores.
4. Desenvolvimento de respiração traqueal, pulmonar e cutânea adequadas à ocupação do
novo ambiente.
5. Desenvolvimento de fecundação interna e o ovo revestido por "casca" para proteção contra
dessecação.
13-Na busca por uma maior produção de grãos, agrônomos selecionaram artificialmente uma
variedade de trigo que produzia 80% mais grãos que as variedades até então cultivadas. Essa
variedade apresentava caule mais curto, de modo que a maior parte do nitrogênio fornecido na
forma de adubo era utilizada pela planta para a produção de grãos. Em pouco tempo os agricultores de uma determinada região abandonaram as variedades antigas e passaram a plantar apenas sementes dessa nova variedade. No entanto, não se sabia que a nova variedade era muito sensível às flutuações climáticas, especialmente a altas temperaturas.
a) Estabeleça relações entre a possível consequência a seleção de uma única variedade para plantio
sobre a diversidade genética do trigo cultivado naquela região e sobre a capacidade do trigo de
responder às alterações ambientais.
Uma única variedade de trigo diminui a probabilidade de adaptação, no caso de alterações
ambientais. Com maior número de variedades, a chance de algumas sobreviverem às
alterações é maior
.
b) O aumento da concentração de CO‚ na atmosfera está relacionado a um fenômeno global que
vem preocupando a comunidade científica e a sociedade em geral nos últimos tempos. Comente os
possíveis efeitos dessa alteração global sobre a produção de grãos da variedade de trigo
mencionada. Qual a importância da manutenção de banco de genes?
O efeito estufa é uma alteração que poderia levar esta variedade a extinção. Um banco de
genes garante a variabilidade genética
.

14-No processo evolutivo, centenas de espécies podem ser criadas em um tempo relativamente
curto. Esse fenômeno é conhecido como radiação adaptativa. No grupo dos répteis, ocorreu uma
grande radiação adaptativa após o aparecimento da fecundação interna e do ovo amniótico; muitas
espécies desse grupo surgiram e ocuparam o habitat terrestre.
Explique por que o ovo amniótico facilitou a ocorrência dessa radiação adaptativa.
Os ovos dos répteis protegem os embriões da desidratação e permitem a reprodução fora do
ambiente aquático, possibilitando a colonização dos ambientes terrestres.

15-Os tigres de dentes-de-sabre são mamíferos extintos. Esses animais possuíam caninos superiores muito desenvolvidos, em forma de sabre. Um fato menos conhecido é que houve várias espécies de mamíferos placentários com dentes-de-sabre.
O diagrama a seguir mostra a filogenia provável dos tigres de dentes-de-sabre placentários
'Barbourofelis' e 'Smilodon'.
A presença da característica dentes-de-sabre em 'Barbourofelis' e 'Smilodon' representa um caso de homologia ou de analogia? Justifique sua resposta.
Analogia. Os ancestrais de cada um desses animais não possuíam essa característica, que
surgiu posteriormente. Os dentes de-sabre surgiram independentemente nos dois grupos, após
a separação dos ancestrais de 'Nimravidae' e 'Felidae'.
16-"Os antepassados dos golfinhos tinham patas, que, de tanto serem usadas para a natação, foram
se transformando em nadadeiras."
a) A frase acima está de acordo com a teoria de Lamarck ou com a teoria de Darwin? Justifique,
relacionando a teoria escolhida com a frase.
Lamarck porque preconiza que as "patas" do golfinho se transformaram em nadadeiras, pelo
uso exagerado, para se adaptar ao ambiente aquático.

b) Por que a frase está em desacordo com a teoria não escolhida?
A frase está em desacordo com a teoria de Darwin porque os golfinhos foram selecionados
nesse ambiente, dentre as variações produzidas pelos seus ancestrais.

17-Desde 1995 alguns estados norte-americanos estão excluindo o ensino da teoria de evolução
biológica dos seus currículos escolares alegando, entre outras razões, que ninguém estava presente
quando a vida surgiu na Terra. Alguns cientistas defendem a teoria da evolução argumentando que, se é necessário "ver para crer", então não poderemos acreditar na existência dos átomos, pois estes também não podem ser vistos. (Adaptado da "ISTO É")
a) Apresente três evidências que apoiam a teoria da evolução biológica.
Evidências da evolução biológica:
- fósseis;
- bioquímica comparada;
- existência de estruturas vestigiais;
- homologias;
- embriologia comparada.

b) A mutação gênica é considerada um dos principais fatores evolutivos. Por quê?
Evidências da evolução biológica:
A mutação gênica é a fonte de novos genes, o que determina a variabilidade dentro dos grupos
biológicos, sobre a qual age a seleção natural.



A importância do estudo dos fósseis para a evolução está na possibilidade de conhecermos organismos que viveram na Terra em tempos remotos, sob condições ambientais distintas das encontradas atualmente, e que podem fornecer indícios de parentesco com as espécies atuais. Por isso, os fósseis são considerados importantes testemunhos da evolução.

As Teorias evolutivas

Várias teorias evolutivas surgiram, destacando-se , entre elas, as teorias de Lamarck e de Darwin. Atualmente, foi formulada a Teoria sintética da evolução, também denominada Neodarwinismo, que incorpora os conceitos modernos da genética ás idéias essenciais de Darwin sobre seleção natural.

A teoria de Lamarck
Jean-Baptiste Lamarck ( 1744-1829 ), naturalista francês, foi o primeiro cientista a propor uma teoria sistemática da evolução. Sua teoria foi publicada em 1809, em um livro denominado Filosofia zoológica.Segundo Lamarck, o principio evolutivo estaria baseado em duas Leis fundamentais:

Lei do uso ou desuso: o uso de determinadas partes do corpo do organismo faz com que estas se desenvolvam, e o desuso faz com que se atrofiem.
Lei da transmissão dos caracteres adquiridos : alterações provocadas em determinadas características do organismo, pelo uso e desuso, são transmitidas aos descendentes.
Lamarck utilizou vários exemplos para explicar sua teoria. Segundo ele, as aves aquáticas tornaram-se pernaltas devido ao esforço que faziam no sentido de esticar as pernas para evitarem molhar as penas durante a locomoção na água. A cada geração, esse esforço produzia aves com pernas mais altas, que transmitiam essa característica à geração seguinte. Após várias gerações, teriam sido originadas as atuais aves pernaltas.
A teoria de Lamarck não é aceita atualmente, pois suas idéias apresentam um erro básico: as características adquiridas não são hereditárias.Verificou-se que as alterações em células somáticas dos indivíduos não alteram as informações genéticas contida nas células germinativas, não sendo, dessa forma, hereditárias.
A teoria de Darwin
Charles Darwin ( 1809-1882 ), naturalista inglês, desenvolveu uma teoria evolutiva que é a base da moderna teoria sintética: a teoria da seleção natural. Segundo Darwin, os organismos mais bem adaptados ao meio têm maiores chances de sobrevivência do que os menos adaptados, deixando um número maior de descendentes. Os organismos mais bem adaptados são, portanto, selecionados para aquele ambiente.
Os princípios básicos das idéias de Darwin podem ser resumidos no seguinte modo:
Os indivíduos de uma mesma espécie apresentam variações em todos os caracteres, não sendo, portanto, indenticos entre si.
Todo organismo tem grande capacidade de reprodução, produzindo muitos descendentes. Entretanto, apenas alguns dos descendentes chegam à idade adulta.
O número de indivíduos de uma espécie é mantido mais ou menos constante ao longo das gerações.
Assim, há grande "luta" pela vida entre os descendentes, pois apesar de nascerem muitos indivíduos poucos atingem a maturalidade, o que mantém constante o número de indivíduos na espécie.
Na "luta" pela vida, organismos com variações favoráveis ás condições do ambiente onde vivem têm maiores chances de sobreviver, quando comparados aos organismos com variações menos favoráveis.
Os organismos com essas variações vantajosas têm maiores chances de deixar descendentes. Como há transmissão de caracteres de pais para filhos, estes apresentam essas variações vantajosas.
Assim , ao longo das gerações, a atuação da seleção natural sobre os indivíduos mantém ou melhora o grau de adaptação destes ao meio.
A abordagem de Darwin sobre a evolução era bastante distinta daquela de Lamarck, como pode ser visto no esquema a seguir:
A teoria sintética da evolução
A Teoria sintética da evolução ou Neodarwinismo foi formulada por vários pesquisadores durante anos de estudos, tomando como essência as noções de Darwin sobre a seleção natural e incorporando noções atuais de genética. A mais importante contribuição individual da Genética, extraída dos trabalhos de Mendel, substituiu o conceito antigo de herança através da mistura de sangue pelo conceito de herança através de partículas: os genes.
A teoria sintética considera, conforme Darwin já havia feito, a população como unidade evolutiva. A população pode ser definida como grupamento de indivíduos de uma mesma espécie que ocorrem em uma mesma área geográfica, em um mesmo intervalo de tempo.
Para melhor compreender esta definição , é importante conhecer o conceito biológico de espécie: agrupamento de populações naturais, real ou potencialmente intercruzantes e reprodutivamente isolados de outros grupos de organismos.
Quando, nesta definição, se diz potencialmente intercruzantes, significa que uma espécie pode ter populações que não cruzem naturalmente por estarem geograficamente separadas. Entretanto, colocadas artificialmente em contato, haverá cruzamento entre os indivíduos, com descendentes férteis. Por isso, são potencialmente intercruzantes.
A definição biológica de espécie só é valida para organismos com reprodução sexuada, já que, no caso dos organismos com reprodução sexuada, já que, no caso dos organismos com reprodução assexuada, as semelhanças entre características morfológicas é que definem os agrupamentos em espécies.
Observando as diferentes populações de indivíduos com reprodução sexuada, pode-se notar que não existe um indivíduo igual ao outro. Execeções a essa regra poderiam ser os gêmeos univitelínicos, mas mesmo eles não são absolutamente idênticos, apesar de o patrimônio genético inicial ser o mesmo. Isso porque podem ocorrer alterações somáticas devidas á ação do meio.
A enorme diversidade de fenótipos em uma população é indicadora da variabilidade genética dessa população, podendo-se notar que esta é geralmente muito ampla.
A compeensão da variabilidade genética e fenotípica dos indivíduos de uma população é fundamental para o estudo dos fenômenos evolutivos, uma vez que a evolução é, na realidade, a transformação estatística de populações ao longo do tempo, ou ainda, alterações na freqüência dos genes dessa população. Os fatores que determinam alterações na freqüência dos genes são denominados fatores evolutivos. Cada população apresenta um conjunto gênico, que sujeito a fatores evolutivos , pode ser alterado.
O conjunto gênico de uma população é o conjunto de todos os genes presentes nessa população. Assim , quanto maior é a variabilidade genética.
Os fatores evolutivos que atuam sobre o conjunto gênico da população podem ser reunidos duas categorias:Fatores que tendem a aumentar a variabilidade genética da população: mutação gênica, mutação cromossônica , recombinação;Fatores que atuam sobre a variabilidade genética jás estabelecida : seleção natural, migração e oscilação genética.
A integração desses fatores associada ao isolamento geográfico pode levar, ao longo do tempo, ao desenvolvimento de mecanismos de isolamento reprodutivo, quando, então, surgem novas espécies.
Fonte: http://www.biologia-ar.hpg.ig.com.br/

Evolução dos Seres Vivos
Jean-Baptiste Lamarck (1744-1829), cientista francês, acreditava que os seres vivos tinham de se transformar para melhor se adaptarem ao ambiente. Assim, ele explicava que as girafas, no passado, tinham pescoço curto e, à medida que escasseava o alimento mais rasteiro, eram forçadas a esticar o pescoço para comer as folhas do alto das árvores. Com isso, o pescoço foi se desenvolvendo pelo uso freqüente e a característica adquirida (pescoço cada vez mas longo) foi se transmitindo aos descendentes, de geração em geração. Depois de séculos, as girafas tinham, então, o longo pescoço que observamos nas girafas atuais.
Essa hipótese, para explicar como se desenvolveu o longo pescoço das girafas, não é aceita pela ciência. Você verá a seguir por que ela é considerada incorreta.
Os últimos dinossauros desapareceram há cerca de 65 milhões de anos e os primeiros seres da nossa espécie só surgiram no planeta há aproximadamente 200 mil anos. Nenhum ser humano, portanto, jamais conviveu com os dinossauros.
Os dinossauros dominaram a Terra
Os dinossauros dominaram a Terra durante aproximadamente 140 milhões de anos. Tinham formas e tamanhos diferentes. Alguns viviam em manadas. Uns eram herbívoros, outros carnívoros.
O Tyrannosaurus rex, era um temido predador. Com seus quinze metros de comprimento e dentes serreados de até dezoito centímetros, pertencia ao grupo dos terópodes. Os terópodes eram carnívoros e andavam sobre as duas patas posteriores. Suas patas anteriores (braços) eram curtas e a cabeça grande suportava longas mandíbulas.
Com a cabeça ocupando um terço do corpo, o Triceratops pesava até cinco toneladas e tinha nove metros de comprimentos. Era o maior dinossauro do grupo dos ceratopsídeos, dinossauros com chifres e um folho no pescoço. Os ceratopsídeos eram herbívoros e andavam em manadas.
Com 26 metros de comprimento e quinze toneladas de peso, o Diplodocus pertencia ao grupo dos saurópodes, os maiores animais que já habitaram a Terra. Eles eram herbívoros.
Os estegossauros pertenciam ao grupo de dinssauros que possuíam fileiras de placas nas costas e enormes espinhos na causa. Tinham cabeça e cérebro muito pequenos em relação ao corpo e também eram herbívoros.
Outros animais e plantas do passado
Além dos dinossauros, temos conhecimento da existência de outros animais e plantas do passado, como, por exemplo, o Arqueópterix, as samambaias gigantes e os ictiossauros. Os cientistas ainda tem dúvidas se o Arqueópterix foi um réptil do passado, um dinossauro com asas ou uma ave primitiva. A primeira hipótese é a que parece ser a mais provável.
O que é um fóssil?
Hoje podemos conhecer paisagens e seres vivos da Terra primitiva reconstituídos em histórias fantásticas de filmes e revistas. Mas, cientificamente, como podemos saber se esses seres existiram mesmo? Quais eram as suas formas e os seus tamanhos?
A descoberta de ossos, dentes ou esqueletos inteiros de animais extintos, enterrados no solo ou incrustados em rochas, é que tornou possível esse conhecimento.
A esse tipo de restos ou simples vestígios (exemplo: pegadas) de seres vivos chamamos fóssil. Estudando os fósseis, podemos descobrir como eram esses seres e como viviam.
Raramente são encontrados fósseis de animais ou plantas inteiros. Em geral, só partes duras, como ossos, conchas e carapaças, ficam incrustadas na rocha. Algumas vezes, os poros dos ossos são preenchidos por minerais como a calcita, por exemplo, mantendo-se assim a forma original. Em outros casos, ocorre a substituição completa do material original por minerais como a sílica.
Há também outro tipo de fossilização muito importante, que é a preservação dos próprios animais e de plantas em âmbar. Esses organismos foram englobados pela resina de um certo tipo de planta há milhões de anos. Claro que só animais menores foram fossilizados dessa forma, pois não conseguiram escapar das gotas de resina. Mesmo pequenos vertebrados, no entanto, já foram encontrados dentro das pedras amarelas e translúcidas de âmbar.
A importância dos fósseis
Estudando os fósseis e comparando-os com os seres atuais, os cientistas descobriram que os animais e os vegetais foram se modificando através dos tempos. Enquanto alguns tipos se extinguiram, outros sofreram transformações, dando origem aos que conhecemos atualmente.
O estudo dos fósseis auxilia a compreensão das modificações sofridas pelas espécies de seres vivos através dos séculos.
Seres vivos e adaptação
O rato-canguru é um pequeno roedor que vive no deserto. Durante o dia, esconde-se em tocas profundas e relativamente frias, saindo apenas à noite em busca do alimento. As fezes desse rato são relativamente secas e seus rins produzem uma urina muito concentrada, com pouca água. Não possuem glândulas sudoríparas e, portanto, não suam.
Nos desertos, o dia costuma ser muito quente e a disponibilidade de água é pequena. Escondendo-se de dia em tocas frias e perdendo pouca água através de fezes secas e de urina concentrada, além de não suar, o rato-canguru consegue viver e se reproduzir no deserto. Diz-se, então, que ele está adaptado às condições desérticas, isto é, possui uma série de características que contribuem para a sua sobrevivência e reprodução naquele ambiente.
Da mesma maneira, as raposas do Ártico estão adaptadas para viver naquele ambiente, onde o frio é muito intenso. Entre outras características, esses animais possuem muitos pêlos longos e lanosos e uma grossa camada de gordura sob a pele. Esses pêlos e a camada gordurosa dificultam muito as perdas de calor para o meio, contribuindo para a manutenção de temperatura do corpo.
Mas ratos-cangurus provavelmente não sobreviveriam no Ártico, nem raposas-árticas no deserto. Na natureza, s seres vivos estão adaptados ao ambiente em que vivem. Num outro ambiente ou quando o ambiente em que vivem muda, as mesmas características que lhe eram favoráveis podem se mostrar inúteis e até mesmo prejudiciais.
Por isso quando vemos informações através dos meios de comunicação que uma região vai ser inundada, por exemplo, para a construção de uma usina hidrelétrica e que o meio-ambiente sofrerá conseqüências, estamos falando que os animais adaptados àquela região provavelmente irão morrer em razão da mudança de habitat e condições climáticas.
O conceito de seleção natural
Em uma cidade inglesa chamada Manchester, em meados do século XIX, antes da industrialização da cidade, viviam mariposas de uma certa espécie: algumas claras e outras escuras. Mas o número de mariposas claras era muito maior.
Depois que a cidade se industrializou, verificou-se o contrário: o número de mariposas escuras passou a ser muito maior. O que teria acontecido?
Antes da industrialização da cidade, o ar não era poluído. Não havia fuligem escura das fábricas; os troncos das árvores eram recobertos por liquens claros. Nesse ambiente de "fundo claro", as mariposas claras passavam mais despercebidas do que as escuras, quando posavam, por exemplo, numa árvore. Assim, pássaros insetívoros visualizavam melhor e devoravam mais as mariposas escuras. Dai, o grande números de mariposas claras em relação às escuras. A coloração clara era, portanto, uma característica favorável para as mariposas que viviam naquele ambiente.
Mas veio a industrialização. E o ambiente mudou. A poluição praticamente eliminou os claros liquens que recobriam o tronco das árvores. A fuligem contribuiu para dotar o ambiente de um "fundo escuro". Nessa nova situação, eram as mariposas escuras que passavam mais despercebidas; as claras, facilmente identificadas pelos pássaros, eram mas devoradas. O número de mariposas escuras, então, se tornou maior e a sua coloração passou a representar a característica favorável.
Pelo exposto acima, podemos concluir que as mariposas apresentavam uma variabilidade de cores: algumas eram claras e outras eram escuras. O ambiente atuou selecionando essa variabilidade: antes da industrialização da cidade, as mariposas claras eram as mais bem adaptadas ao meio; tinham maiores chances de sobreviver e de gerar um maior número de descendentes. Depois da industrialização da cidade, o ambiente mudou e o critério de seleção também mudou: as mariposas escuras é que passaram a ser as mais bem adaptadas ao meio.
Chama-se seleção natural esse mecanismo de o ambiente selecionar os organismos que nele vivem; os indivíduos portadores de características favoráveis tem maior chance de sobreviver e deixar descendentes férteis, enquanto os portadores de características desfavoráveis tendem a ser eliminados, pois terão menos chances.
O conceito de seleção natural foi idealizado pelo cientista inglês Charles Darwin. A teoria da evolução tornou-se realmente aceitável para o mundo científico somente depois do trabalho desse cientista.
O que é evolução?
O processo de transformação pelo qual passam os seres vivos, incluindo a origem de novas espécies e a extinção de outras através dos tempos, chama-se evolução. Esse processo vem acontecendo desde que a vida surgiu na Terra.
Como vimos no capítulo anterior, acredita-se que os primeiros seres vivos surgiram no mar há mais ou menos 3,5 bilhões de anos. Eram seres relativamente simples, unicelulares e heterotróficos.
Milhões de anos depois surgiram os seres unicelulares que já fabricavam seus próprios alimentos, usando a luz como fonte de energia. Muito tempo depois é que apareceram os seres pluricelulares, como as plantas e os animais.
Mas como surgem as diferentes características existentes entre uma espécie e outra de seres vivos? Mesmo entre seres de uma mesma espécie, por que, por exemplo, algumas mariposas são claras e outras escuras?
As várias características de um ser vivo são determinadas pelo material genético existente em suas células. Esse material genético compreende o conjunto dos genes que esse ser vivo possui. Os genes são formados pro substâncias chamadas de ácidos nucléicos. Simplificando, podemos dizer que temos, por exemplo, genes que determinam a cor dos nossos olhos, genes responsáveis pela cor de nossa pele, etc.
Acontece que os vários genes de um indivíduo podem ter sua estrutura alterada de maneira espontânea ou pela ação, por exemplo, de certas substâncias. Essas alterações que o material genético pode sofrer são chamadas de mutações.
As mutações permitem, então, o surgimento de características novas, que podem ser favoráveis ou não para a adaptação de um organismo no ambiente em que vive. Por meio da seleção natural, o ambiente modela uma determinada espécie, preservando os organismos que possuem características favoráveis para viver nele e permitindo que essas características sejam transmitidas a seus descendentes.
Reprodução sexuada e variabilidade genética
Não só as mutações proporcionam variabilidade genética. A reprodução sexual também propicia uma grande mistura genética. Um indivíduo (macho ou fêmea) tem capacidade de produzir muitos tipos diferentes de gametas. Cada gameta irá unir-se - misturar seu material genético - a outro, que terá outra cominação genética, e assim por diante.
Pense numa cadela, por exemplo, que tenha várias ninhadas, cada uma de um pai, um macho, diferente. Resultado: poderão nascer filhotes muito diferentes uns dos outros, quanto ao tamanho, cor, tipo de pêlos, etc.
Conclusão
Os seres vivos se transformam ao longo dos séculos. As mutações e a reprodução sexuada, por exemplo, podem alterar as suas características; estas podem ser transmitidas de geração a geração.
O ambiente seleciona os seres que nele vivem. Indivíduos de uma determinada espécie, que possuam características favoráveis, tendem a sobreviver e deixar descendentes férteis, enquanto outros que não tem essas características tendem a ser eliminados, pois terão menores chances.

Teoria da Seleção Natural

Por Krukemberghe Fonseca
A Teoria da Seleção Natural, ponto central da Teoria Moderna da Evolução Biológica, foi desenvolvida por Charles Darwin para explicar a evolução das espécies, segundo a qual nem todos os indivíduos de uma população têm a mesma expectativa de sobreviver e de se reproduzir. A seleção não representa um evento biótico ao acaso, porém é permanente sobres todas as populações, significando uma pressão ambiental específica de um ecossistema em associação a fatores genéticos, resultando em transformações no decorrer do tempo, capazes de garantir a prevalência de um ser vivo, conforme suas vantagens (aptidões) em detrimento a um outro organismo desprovido de adaptações que assegurem sua permanência. Assim, os mais adaptados, em posterior ou vigente situação ecológica, ou seja, em tempo geológico pretérito (passado) ou contemporâneo (atual), são selecionados segundo a mesma condição (característica), expressando sua resistência vital, transferida aos descendentes, em oposição à eliminação daqueles cujo atributo é desvantajoso, provocando a morte do indivíduo e extinção de um grupo. Contudo, esse mecanismo não representa um sistema constante e estável, existindo situações onde um componente genético desfavorável (genótipo anormal), se sobressai em relação ao alelo em geral favorável (genótipo normal). Exemplo tipificado pela ocorrência da anemia falciforme em território Africano, onde portadores de hemácias anômalas, quando infectados por malária, manifestam expectativa de vida consideravelmente superior a indivíduos com hemácias normais e contaminados pelo plasmódio (gênero do protozoário transmissor da malária). Portanto, o ambiente viabiliza a manutenção ou supressão das espécies, conservando, maximizando ou minimizando a freqüência de um gene, a ponto de suprimi-lo do genoma de uma população, por intervenção de fatores como competição intra-específica alimentar e reprodutiva principalmente.


EVOLUÇÃO









Antes que a teoria da evolução de Charles Darwin fosse aceita como correta pelo meio científico (e isso só aconteceu uns cem anos depois de sua morte) vários outros pesquisadores (alguns nem tanto…) criaram teorias para tentar explicar a evolução dos seres vivos. Um deles foi Jean – Baptiste Pierre Antoine de Monet (1744-1829).
Também conhecido como Chevalier de Lamarck, o naturalista francês que ainda estudou medicina, física e meteorologia, publicou a teoria que hoje chamamos de “lamarckismo” no seu livro “Philosophie Zoologigue” (1809).
A teoria de Lamarck baseou-se em dois princípios básicos: o conceito de que é uma característica intrínseca dos seres vivos evoluírem para um nível de complexidade e perfeição cada vez maiores, motivo pelo qual Lamarck acreditava que os seres haviam evoluído de microorganismos simples originados de matéria não viva (teoria da geração espontânea, bastante popular na época de Lamarck), para organismos mais complexos; O segundo princípio foi o do “uso e desuso”, que o foi o ponto crucial da teoria de Lamarck e dizia, basicamente, que o que não é usado atrofia e o que é usado se desenvolve sendo passado para as gerações futuras. Ou seja, órgãos, membros e outras características dos seres vivos que fossem usadas acabariam se desenvolvendo e passando de geração para geração. Ocorrendo a transmissão hereditária das características adquiridas.
Entretanto a publicação em 1859 de “A origem das espécies” , de Charles Darwin, abalou o fundamento principal da teoria de Lamarck afirmando que a evolução das espécies se daria pelo processo de seleção natural e não pelo uso e desuso. Segundo a teoria de Darwin algumas pequenas variações nos organismos surgiriam ao acaso e, caso essas variações os tornassem mais aptos que os outros organismos estes sobreviveriam transmitindo suas características aos seus descendentes. Ou seja, na teoria de Lamarck o uso acarretaria a evolução, já na teoria de Darwin a evolução se daria pelo acaso aliado a seleção natural.
Para simplificar, vamos usar um exemplo bastante comum para explicar a teoria de Lamarck: imagine que as girafas, antigamente, tinham pescoços bem menores que o das girafas atuais e que, por isso, elas tivessem que esticar seus pescoços repetidamente para alcançar as copas das árvores e se alimentar. Esse movimento constante de estiramento do pescoço (uso) teria causado um alongamento no pescoço das primeiras girafas e, por isso, seus descendentes teriam nascido com pescoços mais longos que seus pais e assim sucessivamente até originar as girafas de pescoço longo que vemos atualmente.
Já Darwin explicaria de outra forma: segundo sua teoria entre as girafas de antigamente com pescoços pequenos teriam nascido, aleatoriamente, alguns indivíduos com pescoço mais longo o que faria com que conseguissem alcançar a comida na copa das árvores. Já as girafas que nasceram com pescoço pequeno não conseguiriam alcançar a comida e morreriam de fome ou simplesmente ficariam em desvantagem na hora de acasalar. Assim, apenas as girafas de pescoço longo conseguiriam procriar transmitindo suas características para seus descendentes e estes para as próximas gerações.
Aqui, ambas as teorias concordam que as características seriam transmitidas para as gerações posteriores e gradativamente sendo aperfeiçoadas. Ou seja, Lamarck não estava completamente errado, mas seu erro foi crucial para que sua teoria caísse por terra.
O fato é que a teoria de Lamarck caiu em descrédito e a teoria da evolução de Darwin, hoje chamada de “Teoria da Evolução Sintética” é que foi aceita como verdadeira pelos cientistas.

Total de visualizações de página

 
Desenvolvido por Othon Fagundes